
MATLAB®

C/C++, Fortran, and Python API Reference

R2015a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® C/C++, Fortran, and Python API Reference
© COPYRIGHT 1984–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History

December 1996 First Printing New for MATLAB 5 (Release 8)
May 1997 Online only Revised for MATLAB 5.1 (Release 9)
January 1998 Online Only Revised for MATLAB 5.2 (Release 10)
January 1999 Online Only Revised for MATLAB 5.3 (Release 11)
September 2000 Online Only Revised for MATLAB 6.0 (Release 12)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
January 2003 Online only Revised for MATLAB 6.5.1 (Release 13SP1)
June 2004 Online only Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised and renamed for MATLAB 7.4

(Release 2007a)
September 2007 Online only Revised and renamed for MATLAB 7.5

(Release 2007b)
March 2008 Online only Revised and renamed for MATLAB 7.6

(Release 2008a)
October 2008 Online only Revised and renamed for MATLAB 7.7

(Release 2008b)
March 2009 Online only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised and renamed for MATLAB 7.10

(Release 2010a)
September 2010 Online only Revised for MATLAB 7.11 (Release 2010b)
April 2011 Online only Revised for MATLAB 7.12 (Release 2011a)
September 2011 Online only Revised for MATLAB 7.13 (Release 2011b)
March 2012 Online only Revised for MATLAB 7.14 (Release 2012a)
September 2012 Online only Revised for MATLAB 8.0 (Release 2012b)
March 2013 Online only Revised for MATLAB 8.1 (Release 2013a)
September 2013 Online only Revised for MATLAB 8.2 (Release 2013b)
March 2014 Online only Revised for MATLAB 8.3 (Release 2014a)
October 2014 Online only Revised for MATLAB 8.4 (Release 2014b)
March 2015 Online only Revised for MATLAB 8.5 (Release 2015a)





v

Contents

API Reference
1





1

API Reference



1  API Reference

1-2

engClose (C and Fortran)
Quit MATLAB engine session

C Syntax
#include "engine.h"

int engClose(Engine *ep);

Fortran Syntax
integer*4 engClose(ep)

mwPointer ep

Arguments

ep

Engine pointer

Returns

0 on success, and 1 otherwise. Possible failure includes attempting to terminate an
already-terminated MATLAB® engine session.

Description

This routine sends a quit command to the MATLAB engine session and closes the
connection.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.



 engClose (C and Fortran)

1-3

• engdemo.c for a C example on UNIX® operating systems.
• engwindemo.c for a C example on Microsoft® Windows® operating systems.
• fengdemo.F for a Fortran example.

See Also

engOpen



1  API Reference

1-4

engEvalString (C and Fortran)

Evaluate expression in string

C Syntax

#include "engine.h"

int engEvalString(Engine *ep, const char *string);

Fortran Syntax

integer*4 engEvalString(ep, string)

mwPointer ep

character*(*) string

Arguments

ep

Engine pointer
string

String to execute

Returns

1 if the engine session is no longer running or the engine pointer is invalid or NULL.
Otherwise, returns 0 even if the MATLAB engine session cannot evaluate the command.

Description

engEvalString evaluates the expression contained in string for the MATLAB engine
session, ep, previously started by engOpen.



 engEvalString (C and Fortran)

1-5

UNIX Operating Systems

On UNIX systems, engEvalString sends commands to the MATLAB workspace by
writing down a pipe connected to the MATLAB stdin process. MATLAB reads back from
stdout any output resulting from the command that ordinarily appears on the screen,
into the buffer defined by engOutputBuffer.

To turn off output buffering in C, use:

engOutputBuffer(ep, NULL, 0);

To turn off output buffering in Fortran, use:

engOutputBuffer(ep, '')

Microsoft Windows Operating Systems

On a Windows system, engEvalString communicates with MATLAB software using a
Component Object Model (COM) interface.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• engdemo.c for a C example on UNIX operating systems.
• engwindemo.c for a C example on Microsoft Windows operating systems.
• fengdemo.F for a Fortran example.

See Also

engOpen, engOutputBuffer



1  API Reference

1-6

engGetVariable (C and Fortran)
Copy variable from MATLAB engine workspace

C Syntax
#include "engine.h"

mxArray *engGetVariable(Engine *ep, const char *name);

Fortran Syntax
mwPointer engGetVariable(ep, name)

mwPointer ep

character*(*) name

Arguments

ep

Engine pointer
name

Name of mxArray to get from MATLAB workspace

Returns

Pointer to a newly allocated mxArray structure, or NULL if the attempt fails.
engGetVariable fails if the named variable does not exist.

Description

engGetVariable reads the named mxArray from the MATLAB engine session
associated with ep.

The limit for the size of data transferred is 2 GB.



 engGetVariable (C and Fortran)

1-7

Use mxDestroyArray to destroy the mxArray created by this routine when you are
finished with it.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• engdemo.c for a C example on UNIX operating systems.
• engwindemo.c for a C example on Microsoft Windows operating systems.

See Also

engPutVariable, mxDestroyArray



1  API Reference

1-8

engGetVisible (C)
Determine visibility of MATLAB engine session

C Syntax
#include "engine.h"

int engGetVisible(Engine *ep, bool *value);

Arguments

ep

Engine pointer
value

Pointer to value returned from engGetVisible

Returns

Microsoft Windows Operating Systems Only

0 on success, and 1 otherwise.

Description

engGetVisible returns the current visibility setting for MATLAB engine session, ep. A
visible engine session runs in a window on the Windows desktop, thus making the engine
available for user interaction. MATLAB removes an invisible session from the desktop.

Examples

The following code opens engine session ep and disables its visibility.



 engGetVisible (C)

1-9

Engine *ep;

bool vis;

ep = engOpen(NULL);

engSetVisible(ep, 0);

To determine the current visibility setting, use:

engGetVisible(ep, &vis);

See Also

engSetVisible



1  API Reference

1-10

Engine (C)
Type for MATLAB engine

Description

A handle to a MATLAB engine object.

Engine is a C language opaque type.

You can call MATLAB software as a computational engine by writing C and Fortran
programs that use the MATLAB engine library. Engine is the link between your
program and the separate MATLAB engine process.

The header file containing this type is:

#include "engine.h"

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• engdemo.c shows how to call the MATLAB engine functions from a C program.
• engwindemo.c show how to call the MATLAB engine functions from a C program for

Windows systems.
• fengdemo.F shows how to call the MATLAB engine functions from a Fortran program.

See Also

engOpen



 engOpen (C and Fortran)

1-11

engOpen (C and Fortran)
Start MATLAB engine session

C Syntax
#include "engine.h"

Engine *engOpen(const char *startcmd);

Fortran Syntax
mwPointer engOpen(startcmd)

character*(*) startcmd

Arguments

startcmd

String to start the MATLAB process. On Windows systems, the startcmd string
must be NULL.

Returns

Pointer to an engine handle, or NULL if the open fails.

Description

This routine allows you to start a MATLAB process for using MATLAB as a
computational engine.

engOpen starts a MATLAB process using the command specified in the string startcmd,
establishes a connection, and returns an engine pointer.

On UNIX systems, if startcmd is NULL or the empty string, engOpen starts a MATLAB
process on the current host using the command matlab. If startcmd is a hostname,



1  API Reference

1-12

engOpen starts a MATLAB process on the designated host by embedding the specified
hostname string into the larger string:

"rsh hostname \"/bin/csh -c 'setenv DISPLAY\ 

 hostname:0; matlab'\""

If startcmd is any other string (has white space in it, or nonalphanumeric characters),
MATLAB executes the string literally.

On UNIX systems, engOpen performs the following steps:

1 Creates two pipes.
2 Forks a new process. Sets up the pipes to pass stdin and stdout from MATLAB

(parent) software to two file descriptors in the engine program (child).
3 Executes a command to run MATLAB software (rsh for remote execution).

On Windows systems, engOpen opens a COM channel to MATLAB. The MATLAB
software you registered during installation starts. If you did not register during
installation, enter the following command at the MATLAB prompt:

!matlab -regserver

See “MATLAB COM Integration” for additional details.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• engdemo.c for a C example on UNIX operating systems.
• engwindemo.c for a C example on Microsoft Windows operating systems.
• fengdemo.F for a Fortran example.



 engOpenSingleUse (C)

1-13

engOpenSingleUse (C)
Start MATLAB engine session for single, nonshared use

C Syntax
#include "engine.h"

Engine *engOpenSingleUse(const char *startcmd, void *dcom,

  int *retstatus);

Arguments
startcmd

String to start MATLAB process. On Microsoft Windows systems, the startcmd
string must be NULL.

dcom

Reserved for future use; must be NULL.
retstatus

Return status; possible cause of failure.

Returns

Microsoft Windows Operating Systems Only

Pointer to an engine handle, or NULL if the open fails.

UNIX Operating Systems

Not supported on UNIX systems.

Description
This routine allows you to start multiple MATLAB processes using MATLAB as a
computational engine.



1  API Reference

1-14

engOpenSingleUse starts a MATLAB process, establishes a connection, and returns
a unique engine identifier, or NULL if the open fails. Each call to engOpenSingleUse
starts a new MATLAB process.

engOpenSingleUse opens a COM channel to MATLAB. This starts the MATLAB
software you registered during installation. If you did not register during installation,
enter the following command at the MATLAB prompt:

!matlab -regserver

engOpenSingleUse allows single-use instances of an engine server.
engOpenSingleUse differs from engOpen, which allows multiple applications to use the
same engine server.

See “MATLAB COM Integration” for additional details.



 engOutputBuffer (C and Fortran)

1-15

engOutputBuffer (C and Fortran)
Specify buffer for MATLAB output

C Syntax
#include "engine.h"

int engOutputBuffer(Engine *ep, char *p, int n);

Fortran Syntax
integer*4 engOutputBuffer(ep, p)

mwPointer ep

character*n p

Arguments

ep

Engine pointer
p

Pointer to character buffer
n

Length of buffer p

Returns

1 if you pass it a NULL engine pointer. Otherwise, returns 0.

Description

engOutputBuffer defines a character buffer for engEvalString to return any output
that ordinarily appears on the screen.



1  API Reference

1-16

The default behavior of engEvalString is to discard any standard output caused by the
command it is executing. A call to engOutputBuffer with a buffer of nonzero length
tells any subsequent calls to engEvalString to save output in the character buffer
pointed to by p.

To turn off output buffering in C, use:

engOutputBuffer(ep, NULL, 0);

To turn off output buffering in Fortran, use:

engOutputBuffer(ep, '')

Note The buffer returned by engEvalString is not NULL terminated.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• engdemo.c for a C example on UNIX operating systems.
• engwindemo.c for a C example on Microsoft Windows operating systems.
• fengdemo.F for a Fortran example.

See Also

engOpen, engEvalString



 engPutVariable (C and Fortran)

1-17

engPutVariable (C and Fortran)
Put variable into MATLAB engine workspace

C Syntax
#include "engine.h"

int engPutVariable(Engine *ep, const char *name, const mxArray 

     *pm);

Fortran Syntax
integer*4 engPutVariable(ep, name, pm)

mwPointer ep, pm

character*(*) name

Arguments

ep

Engine pointer
name

Name of mxArray in the engine workspace
pm

mxArray pointer

Returns

0 if successful and 1 if an error occurs.

Description

engPutVariable writes mxArray pm to the engine ep, giving it the variable name name.



1  API Reference

1-18

If the mxArray does not exist in the workspace, the function creates it. If an mxArray
with the same name exists in the workspace, the function replaces the existing mxArray
with the new mxArray.

The limit for the size of data transferred is 2 GB.

Do not use MATLAB function names for variable names. Common variable names that
conflict with function names include i, j, mode, char, size, or path. To determine
whether a particular name is associated with a MATLAB function, use the which
function.

The engine application owns the original mxArray and is responsible for freeing its
memory. Although the engPutVariable function sends a copy of the mxArray to the
MATLAB workspace, the engine application does not need to account for or free memory
for the copy.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• engdemo.c for a C example on UNIX operating systems.
• engwindemo.c for a C example on Microsoft Windows operating systems.

See Also

engGetVariable



 engSetVisible (C)

1-19

engSetVisible (C)
Show or hide MATLAB engine session

C Syntax
#include "engine.h"

int engSetVisible(Engine *ep, bool value);

Arguments

ep

Engine pointer
value

Value to set the Visible property to. Set value to 1 to make the engine window
visible, or to 0 to make it invisible.

Returns

Microsoft Windows Operating Systems Only

0 on success, and 1 otherwise.

Description

engSetVisible makes the window for the MATLAB engine session, ep, either visible
or invisible on the Windows desktop. You can use this function to enable or disable user
interaction with the MATLAB engine session.

Examples

The following code opens engine session ep and disables its visibility.



1  API Reference

1-20

Engine *ep;

bool vis;

ep = engOpen(NULL);

engSetVisible(ep, 0);

To determine the current visibility setting, use:

engGetVisible(ep, &vis);

See Also

engGetVisible



 matClose (C and Fortran)

1-21

matClose (C and Fortran)
Close MAT-file

C Syntax
#include "mat.h"

int matClose(MATFile *mfp);

Fortran Syntax
integer*4 matClose(mfp)

mwPointer mfp

Arguments

mfp

Pointer to MAT-file information

Returns

EOF in C (-1 in Fortran) for a write error, and 0 if successful.

Description

matClose closes the MAT-file associated with mfp.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matcreat.c



1  API Reference

1-22

• matdgns.c
• matdemo1.F
• matdemo2.F

See Also

matOpen



 matDeleteVariable (C and Fortran)

1-23

matDeleteVariable (C and Fortran)
Delete array from MAT-file

C Syntax
#include "mat.h"

int matDeleteVariable(MATFile *mfp, const char *name);

Fortran Syntax
integer*4 matDeleteVariable(mfp, name)

mwPointer mfp

character*(*) name

Arguments

mfp

Pointer to MAT-file information
name

Name of mxArray to delete

Returns

0 if successful, and nonzero otherwise.

Description

matDeleteVariable deletes the named mxArray from the MAT-file pointed to by mfp.



1  API Reference

1-24

MATFile (C and Fortran)
Type for MAT-file

Description

A handle to a MAT-file object. A MAT-file is the data file format MATLAB software uses
for saving data to your disk.

MATFile is a C language opaque type.

The MAT-file interface library contains routines for reading and writing MAT-files. Call
these routines from your own C/C++ and Fortran programs, using MATFile to access
your data file.

The header file containing this type is:

#include "mat.h"

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matcreat.c
• matdgns.c
• matdemo1.F
• matdemo2.F

See Also

matOpen, matClose, matPutVariable, matGetVariable, mxDestroyArray



 matGetDir (C and Fortran)

1-25

matGetDir (C and Fortran)

List of variables in MAT-file

C Syntax

#include "mat.h"

char **matGetDir(MATFile *mfp, int *num);

Fortran Syntax

mwPointer matGetDir(mfp, num)

mwPointer mfp

integer*4 num

Arguments

mfp

Pointer to MAT-file information
num

Pointer to the variable containing the number of mxArrays in the MAT-file

Returns

Pointer to an internal array containing pointers to the names of the mxArrays in the
MAT-file pointed to by mfp. In C, each name is a NULL-terminated string. The num
output argument is the length of the internal array (number of mxArrays in the MAT-
file). If num is zero, mfp contains no arrays.

matGetDir returns NULL in C (0 in Fortran). If matGetDir fails, sets num to a negative
number.



1  API Reference

1-26

Description

This routine provides you with a list of the names of the mxArrays contained within a
MAT-file.

matGetDir allocates memory for the internal array of strings using a mxCalloc. Free
the memory using mxFree when you are finished with the array.

MATLAB variable names can be up to length mxMAXNAM, defined in the C header file
matrix.h.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matcreat.c
• matdgns.c
• matdemo2.F



 matGetFp (C)

1-27

matGetFp (C)
File pointer to MAT-file

C Syntax
#include "mat.h"

FILE *matGetFp(MATFile *mfp);

Arguments

mfp

Pointer to MAT-file information

Returns

C file handle to the MAT-file with handle mfp. Returns NULL if mfp is a handle to a MAT-
file in HDF5-based format.

Description

Use matGetFp to obtain a C file handle to a MAT-file. Standard C library routines, like
ferror and feof, use file handle to investigate errors.



1  API Reference

1-28

matGetNextVariable (C and Fortran)

Next array in MAT-file

C Syntax

#include "mat.h"

mxArray *matGetNextVariable(MATFile *mfp, const char **name);

Fortran Syntax

mwPointer matGetNextVariable(mfp, name)

mwPointer mfp

character*(*) name

Arguments

mfp

Pointer to MAT-file information
name

Pointer to the variable containing the mxArray name

Returns

Pointer to a newly allocated mxArray structure representing the next mxArray from the
MAT-file pointed to by mfp. The function returns the name of the mxArray in name.

matGetNextVariable returns NULL in C (0 in Fortran) for end-of-file or if there is an
error condition. In C, use feof and ferror from the Standard C Library to determine
status.



 matGetNextVariable (C and Fortran)

1-29

Description

matGetNextVariable allows you to step sequentially through a MAT-file and read all
the mxArrays in a single pass. The function reads and returns the next mxArray from
the MAT-file pointed to by mfp.

Use matGetNextVariable immediately after opening the MAT-file with matOpen
and not with other MAT-file routines. Otherwise, the concept of the next mxArray is
undefined.

Use mxDestroyArray to destroy the mxArray created by this routine when you are
finished with it.

The order of variables returned from successive calls to matGetNextVariable is not
guaranteed to be the same order in which the variables were written.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matdgns.c

See Also

matGetNextVariableInfo, matGetVariable, mxDestroyArray



1  API Reference

1-30

matGetNextVariableInfo (C and Fortran)

Array header information only

C Syntax

#include "mat.h"

mxArray *matGetNextVariableInfo(MATFile *mfp, const char **name);

Fortran Syntax

mwPointer matGetNextVariableInfo(mfp, name)

mwPointer mfp

character*(*) name

Arguments

mfp

Pointer to MAT-file information
name

Pointer to the variable containing the mxArray name

Returns

Pointer to a newly allocated mxArray structure representing header information for the
next mxArray from the MAT-file pointed to by mfp. The function returns the name of the
mxArray in name.

matGetNextVariableInfo returns NULL in C (0 in Fortran) when the end-of-file is
reached or if there is an error condition. In C, use feof and ferror from the Standard C
Library to determine status.



 matGetNextVariableInfo (C and Fortran)

1-31

Description

matGetNextVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc, from the current file offset.

If pr, pi, ir, and jc are nonzero values when loaded with matGetVariable,
matGetNextVariableInfo sets them to -1 instead. These headers are for
informational use only. Never pass this data back to the MATLAB workspace or save it to
MAT-files.

Use mxDestroyArray to destroy the mxArray created by this routine when you are
finished with it.

The order of variables returned from successive calls to matGetNextVariableInfo is
not guaranteed to be the same order in which the variables were written.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matdgns.c

See Also

matGetNextVariable, matGetVariableInfo



1  API Reference

1-32

matGetVariable (C and Fortran)
Array from MAT-file

C Syntax
#include "mat.h"

mxArray *matGetVariable(MATFile *mfp, const char *name);

Fortran Syntax
mwPointer matGetVariable(mfp, name)

mwPointer mfp

character*(*) name

Arguments

mfp

Pointer to MAT-file information
name

Name of mxArray to get from MAT-file

Returns

Pointer to a newly allocated mxArray structure representing the mxArray named by
name from the MAT-file pointed to by mfp.

matGetVariable returns NULL in C (0 in Fortran) if the attempt to return the mxArray
named by name fails.

Description

This routine allows you to copy an mxArray out of a MAT-file.



 matGetVariable (C and Fortran)

1-33

Use mxDestroyArray to destroy the mxArray created by this routine when you are
finished with it.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matcreat.c

See Also

matPutVariable, mxDestroyArray



1  API Reference

1-34

matGetVariableInfo (C and Fortran)
Array header information only

C Syntax
#include "mat.h"

mxArray *matGetVariableInfo(MATFile *mfp, const char *name);

Fortran Syntax
mwPointer matGetVariableInfo(mfp, name)

mwPointer mfp

character*(*) name

Arguments
mfp

Pointer to MAT-file information
name

Name of mxArray to get from MAT-file

Returns
Pointer to a newly allocated mxArray structure representing header information for the
mxArray named by name from the MAT-file pointed to by mfp.

matGetVariableInfo returns NULL in C (0 in Fortran) if the attempt to return header
information for the mxArray named by name fails.

Description
matGetVariableInfo loads only the array header information, including everything
except pr, pi, ir, and jc. It recursively creates the cells and structures through their
leaf elements, but does not include pr, pi, ir, and jc.



 matGetVariableInfo (C and Fortran)

1-35

If pr, pi, ir, and jc are nonzero values when loaded with matGetVariable,
matGetVariableInfo sets them to -1 instead. These headers are for informational use
only. Never pass this data back to the MATLAB workspace or save it to MAT-files.

Use mxDestroyArray to destroy the mxArray created by this routine when you are
finished with it.

See Also

matGetVariable



1  API Reference

1-36

matlab.engine.FutureResult class

Package: matlab.engine

Results of asynchronous call to MATLAB function stored in Python object

Description

The FutureResult class stores results of an asynchronous call to a MATLAB function in
a Python® object.

Construction

The MATLAB Engine for Python creates a FutureResult object when
a MATLAB function is called asynchronously. There is no need to call
matlab.engine.FutureResult() to create FutureResult objects of your own.

Methods

cancel  
Cancel asynchronous call to MATLAB
function from Python

cancelled  
Cancellation status of asynchronous call to
MATLAB function from Python

done  
Completion status of asynchronous call to
MATLAB function from Python

result  
Result of asynchronous call to MATLAB
function from Python



 matlab.engine.FutureResult class

1-37

Exceptions

CancelledError MATLAB engine cannot cancel function
call

InterruptedError Function call interrupted
MatlabExecutionError Function call fails to execute
RejectedExecutionError Engine terminated
SyntaxError Syntax error in function call
TimeoutError Result cannot be returned within the

timeout period
TypeError Data type of output argument not

supported

Examples

Get Result of Asynchronous MATLAB Call from Python

Call the MATLAB sqrt function from Python. Set async to True to make the function
call asynchronously.

import matlab.engine

eng = matlab.engine.start_matlab()

future = eng.sqrt(4.0,async=True)

ret = future.result()

print(ret)

2.0

• “Call MATLAB Functions from Python”
• “Call MATLAB Functions Asynchronously from Python”

See Also
matlab.engine.MatlabEngine

Introduced in R2014b



1  API Reference

1-38

cancel
Class: matlab.engine.FutureResult
Package: matlab.engine

Cancel asynchronous call to MATLAB function from Python

Syntax

tf = FutureResult.cancel()

Description

tf = FutureResult.cancel() cancels a call to a MATLAB function called
asynchronously from Python. FutureResult.cancel returns True if it successfully
cancels the function, and False if it cannot cancel the function.

Output Arguments

tf — Cancellation status
True | False

Cancellation status, returned as either True or False. The status, tf, is True if
FutureResult.cancel successfully cancels the asynchronous function call, and is
False otherwise.

Examples

Cancel an Asynchronous Call

Start an endless loop in MATLAB with an asynchronous call to the eval function. Then,
cancel it.

import matlab.engine

eng = matlab.engine.start_matlab()



 cancel

1-39

ret = eng.eval("while 1; end",nargout=0,async=True)

tf = ret.cancel()

print(tf)

True



1  API Reference

1-40

cancelled
Class: matlab.engine.FutureResult
Package: matlab.engine

Cancellation status of asynchronous call to MATLAB function from Python

Syntax

tf = FutureResult.cancelled()

Description

tf = FutureResult.cancelled() returns the cancellation status of a call to a
MATLAB function called asynchronously from Python. FutureResult.cancelled
returns True if a previous call to FutureResult.cancel succeeded, and False
otherwise.

Output Arguments

tf — Cancellation status
True | False

Cancellation status of an asynchronous function call, returned as either True or False.

Examples

Check Cancellation Status of Asynchronous Call

Start an endless loop in MATLAB with an asynchronous call to the eval function. Cancel
it and check that the engine stopped the loop.

import matlab.engine

eng = matlab.engine.start_matlab()

ret = eng.eval("while 1; end",nargout=0,async=True)



 cancelled

1-41

eval_stop = ret.cancel()

tf = ret.cancelled()

print(tf)

True



1  API Reference

1-42

done
Class: matlab.engine.FutureResult
Package: matlab.engine

Completion status of asynchronous call to MATLAB function from Python

Syntax

tf = FutureResult.done()

Description

tf = FutureResult.done() returns the completion status of a MATLAB function
called asynchronously from Python. FutureResult.done returns True if the function
has finished, and False if it has not finished.

Output Arguments

tf — Completion status of asynchronous function call
True | False

Completion status of an asynchronous function call, returned as either True or False.

Examples

Check If Asynchronous Call Finished

Call the MATLAB sqrt function with async = True. Check the status of ret to learn if
sqrt is finished.

import matlab.engine

eng = matlab.engine.start_matlab()

ret = eng.sqrt(4.0,async=True)

tf = ret.done()



 done

1-43

print(tf)

True

When ret.done() returns True, then you can call ret.result() to return the square
root.



1  API Reference

1-44

result

Class: matlab.engine.FutureResult
Package: matlab.engine

Result of asynchronous call to MATLAB function from Python

Syntax

ret = FutureResult.result(timeout=None)

Description

ret = FutureResult.result(timeout=None) returns the actual result of a call to a
MATLAB function called asynchronously from Python.

Input Arguments

timeout — Timeout value in seconds
None (default) | Python float

Timeout value in seconds, specified as Python data type float, to wait for result of the
function call. If timeout = None, the FutureResult.result function waits until the
function call finishes, and then returns the result.

Output Arguments

ret — Result of asynchronous function call
Python object

Result of an asynchronous function call, returned as a Python object, that is the actual
output argument of a call to a MATLAB function.



 result

1-45

Examples

Get MATLAB Output Argument from Asynchronous Call

Call the MATLAB sqrt function from Python. Set async to True and get the square
root from the FutureResult object.

import matlab.engine

eng = matlab.engine.start_matlab()

future = eng.sqrt(4.0,async=True)

ret = future.result()

print(ret)

2.0



1  API Reference

1-46

matlab.engine.MatlabEngine class
Package: matlab.engine

Python object using MATLAB as computational engine within Python session

Description

The MatlabEngine class uses a MATLAB process as a computational engine for Python.
You can call MATLAB functions as methods of a MatlabEngine object because the
functions are dynamically invoked when you call them. You also can call functions and
scripts that you define. You can send data to, and retrieve data from, the MATLAB
workspace associated with a MatlabEngine object.

Construction

The matlab.engine.start_matlab function creates a new MatlabEngine object each
time it is called. There is no need to call matlab.engine.MatlabEngine() to create
MatlabEngine objects of your own.

Methods

You can call any MATLAB function as a method of a MatlabEngine object. The engine
dynamically invokes a MATLAB function when you call it. The syntax shows positional,
keyword, and output arguments of a function call.

ret =

MatlabEngine.matlabfunc(*args,nargout=1,async=False,stdout=sys.stsdout,stderr=sys.stderr)

Replace matlabfunc with the name of any MATLAB function (such as isprime or
sqrt). Replace *args with input arguments for the MATLAB function you call. The
keyword arguments specify:

• The number of output arguments the function returns
• Whether the engine calls the function asynchronously
• Where the engine sends standard output and standard error coming from the function



 matlab.engine.MatlabEngine class

1-47

Specify keyword arguments only when specifying values that are not the default values
shown in the syntax.

Input Arguments to MATLAB Function

Argument Description Python Type

*args Input arguments to
MATLAB function, specified
as positional arguments

Any Python types that
the engine can convert to
MATLAB types

Keyword Arguments to Engine

Argument Description Python Type

nargout Number of output
arguments from MATLAB
function

int

Default: 1

async Flag to call MATLAB
function asynchronously

bool

Default: False
stdout Standard output StringIO.StringIO object

(Python 2.7 )
io.StringIO object (Python
3.3 and 3.4)
Default: sys.stdout

stderr Standard error StringIO.StringIO object
(Python 2.7 )
io.StringIO object (Python
3.3 and 3.4)
Default: sys.stderr

Output Arguments

Output Type Description Required Keyword Arguments

Python variable One output argument from
MATLAB function

Default values

tuple Multiple output arguments
from MATLAB function

nargout=n (where n > 1)



1  API Reference

1-48

Output Type Description Required Keyword Arguments

None No output argument from
MATLAB function

nargout=0

FutureResult object A placeholder for
output arguments from
asynchronous call to
MATLAB function

async=True

Exceptions

MatlabExecutionError Function call fails to execute
RejectedExecutionError MATLAB engine terminated
SyntaxError Syntax error in a function call
TypeError Data type of an input or output argument

not supported

Attributes

workspace Python dictionary containing references to
MATLAB variables. You can assign data
to, and get data from, a MATLAB variable
through the workspace. The name of each
MATLAB variable you create becomes a
key in the workspace dictionary. The keys
in workspace must be valid MATLAB
identifiers (for example, you cannot use
numbers as keys).

Examples

Call MATLAB Functions from Python

Call the MATLAB sqrt function from Python using the engine.



 matlab.engine.MatlabEngine class

1-49

import matlab.engine

eng = matlab.engine.start_matlab()

ret = eng.sqrt(4.0)

print(ret)

2.0

Put Array Into MATLAB Workspace

Create an array in Python and put it into the MATLAB workspace.

import matlab.engine

eng = matlab.engine.start_matlab()

px = eng.linspace(0.0,6.28,1000)

px is a MATLAB array, but eng.linspace returned it to Python. Put the array into the
MATLAB workspace to use it in MATLAB.

eng.workspace['mx'] = px

When you add a new entry to the engine workspace dictionary, you create a new
MATLAB variable, as well. The engine converts the data to a MATLAB data type.

Get Data from MATLAB Workspace

Get pi from the MATLAB workspace and copy it to a Python variable.

import matlab.engine

eng = matlab.engine.start_matlab()

eng.eval('a = pi;',nargout=0)

mpi = eng.workspace['a']

print(mpi)

3.14159265359

• “Call MATLAB Functions from Python”
• “Call MATLAB Functions Asynchronously from Python”
• “Redirect Standard Output and Error to Python”

See Also
matlab.engine.FutureResult | matlab.engine.start_matlab

Introduced in R2014b



1  API Reference

1-50

matlab.engine.start_matlab
Start MATLAB Engine for Python

Syntax

eng = matlab.engine.start_matlab()

eng = matlab.engine.start_matlab(option)

Description

eng = matlab.engine.start_matlab() starts a new MATLAB process, and returns
Python variable eng, which is a MatlabEngine object for communicating with the
MATLAB process.

If MATLAB cannot be started, the engine raises an EngineError exception.

eng = matlab.engine.start_matlab(option) uses startup options specified by
option.

For example, call matlab.engine.start_matlab('-desktop') to start the MATLAB
desktop from Python.

Examples

Start MATLAB Engine from Python

Start an engine and a new MATLAB process from the Python command line.

import matlab.engine

eng = matlab.engine.start_matlab()

Start Multiple Engines

Start a different MATLAB process from each engine.

import matlab.engine

eng1 = matlab.engine.start_matlab()



 matlab.engine.start_matlab

1-51

eng2 = matlab.engine.start_matlab()

Start MATLAB Desktop with Engine

Start an engine with the MATLAB desktop.

import matlab.engine

eng = matlab.engine.start_matlab("-desktop")

You also can start the desktop after you start the engine.

import matlab.engine

eng = matlab.engine.start_matlab()

eng.desktop(nargout=0)

Note: You can call MATLAB functions from both the desktop and Python.

• “Start and Stop MATLAB Engine for Python”

Input Arguments

option — Startup options for MATLAB process
'-nodesktop' (default) | string

Startup options for the MATLAB process, specified as a string. You can specify multiple
startup options with option.

The engine supports '-desktop' to start MATLAB with the desktop. In addition,
the engine supports all MATLAB startup options, except for the options listed in
“Limitations” on page 1-52.
Example: matlab.engine.start_matlab('-desktop -r "format short"') starts
the desktop from Python. The engine passes '-r "format short"' to MATLAB.

Output Arguments

eng — Python variable for communicating with MATLAB
MatlabEngine object



1  API Reference

1-52

Python variable for communicating with MATLAB, returned as a MatlabEngine object.
Each time you call matlab.engine.start_matlab, it starts a new MATLAB process.

Limitations

The engine does not support these MATLAB startup options:

• -h

• -help

• -?

• -n

• -e

• -softwareopengl

• -logfile

More About
• “Startup Options”
• “Commonly Used Startup Options”

See Also
matlab.engine.MatlabEngine

Introduced in R2014b



 matOpen (C and Fortran)

1-53

matOpen (C and Fortran)
Open MAT-file

C Syntax
#include "mat.h"

MATFile *matOpen(const char *filename, const char *mode);

Fortran Syntax
mwPointer matOpen(filename, mode)

character*(*) filename, mode

Arguments

filename

Name of file to open
mode

File opening mode. The following table lists valid values for mode.

r Opens file for reading only; determines the current version of the MAT-
file by inspecting the files and preserves the current version.

u Opens file for update, both reading and writing. If the file does not exist,
does not create a file (equivalent to the r+ mode of fopen). Determines
the current version of the MAT-file by inspecting the files and preserves
the current version.

w Opens file for writing only; deletes previous contents, if any.
w4 Creates a MAT-file compatible with MATLAB Versions 4 software and

earlier.
wL Opens file for writing character data using the default character set

for your system. Use MATLAB Version 6 or 6.5 software to read the
resulting MAT-file.



1  API Reference

1-54

If you do not use the wL mode switch, MATLAB writes character data to
the MAT-file using Unicode® character encoding by default.

wz Opens file for writing compressed data. By default, the MATLAB save
function compresses workspace variables as they are saved to a MAT-file.
To use the same compression ratio when creating a MAT-file with the
matOpen function, use the wz option.

w7.3 Creates a MAT-file in an HDF5-based format that can store objects that
occupy more than 2 GB.

Returns

File handle, or NULL in C (0 in Fortran) if the open fails.

Description

This routine opens a MAT-file for reading and writing.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matcreat.c
• matdgns.c
• matdemo1.F
• matdemo2.F

See Also

matClose



 matPutVariable (C and Fortran)

1-55

matPutVariable (C and Fortran)
Array to MAT-file

C Syntax
#include "mat.h"

int matPutVariable(MATFile *mfp, const char *name, const mxArray 

  *pm);

Fortran Syntax
integer*4 matPutVariable(mfp, name, pm)

mwPointer mfp, pm

character*(*) name

Arguments
mfp

Pointer to MAT-file information
name

Name of mxArray to put into MAT-file
pm

mxArray pointer

Returns

0 if successful and nonzero if an error occurs. In C, use feof and ferror from the
Standard C Library along with matGetFp to determine status.

Description

This routine puts an mxArray into a MAT-file.



1  API Reference

1-56

matPutVariable writes mxArray pm to the MAT-file mfp. If the mxArray does
not exist in the MAT-file, the function appends it to the end. If an mxArray with the
same name exists in the file, the function replaces the existing mxArray with the new
mxArray by rewriting the file.

Do not use MATLAB function names for variable names. Common variable names that
conflict with function names include i, j, mode, char, size, or path. To determine
whether a particular name is associated with a MATLAB function, use the which
function.

The size of the new mxArray can be different from the existing mxArray.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matcreat.c

See Also

matGetVariable, matGetFp



 matPutVariableAsGlobal (C and Fortran)

1-57

matPutVariableAsGlobal (C and Fortran)
Array to MAT-file as originating from global workspace

C Syntax
#include "mat.h"

int matPutVariableAsGlobal(MATFile *mfp, const char *name, const 

  mxArray *pm);

Fortran Syntax
integer*4 matPutVariableAsGlobal(mfp, name, pm)

mwPointer mfp, pm

character*(*) name

Arguments
mfp

Pointer to MAT-file information
name

Name of mxArray to put into MAT-file
pm

mxArray pointer

Returns
0 if successful and nonzero if an error occurs. In C, use feof and ferror from the
Standard C Library with matGetFp to determine status.

Description
This routine puts an mxArray into a MAT-file. matPutVariableAsGlobal is like
matPutVariable, except that MATLAB software loads the array into the global



1  API Reference

1-58

workspace and sets a reference to it in the local workspace. If you write to a MATLAB
4 format file, matPutVariableAsGlobal does not load it as global and has the same
effect as matPutVariable.

matPutVariableAsGlobal writes mxArray pm to the MAT-file mfp. If the mxArray
does not exist in the MAT-file, the function appends it to the end. If an mxArray with the
same name exists in the file, the function replaces the existing mxArray with the new
mxArray by rewriting the file.

Do not use MATLAB function names for variable names. Common variable names that
conflict with function names include i, j, mode, char, size, or path. To determine
whether a particular name is associated with a MATLAB function, use the which
function.

The size of the new mxArray can be different from the existing mxArray.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matcreat.c

See Also

matPutVariable, matGetFp



 mexAtExit (C and Fortran)

1-59

mexAtExit (C and Fortran)
Register function to call when MEX-function clears or MATLAB terminates

C Syntax
#include "mex.h"

int mexAtExit(void (*ExitFcn)(void));

Fortran Syntax
#include "fintrf.h"

integer*4 mexAtExit(ExitFcn)

subroutine ExitFcn()

Arguments

ExitFcn

Pointer to function you want to run on exit

Returns

Always returns 0.

Description

Use mexAtExit to register a function to call just before clearing the MEX-function or
terminating MATLAB. mexAtExit gives your MEX-function a chance to perform tasks
such as freeing persistent memory and closing files. Other typical tasks include closing
streams or sockets.

Each MEX-function can register only one active exit function at a time. If you call
mexAtExit more than once, MATLAB uses the ExitFcn from the more recent
mexAtExit call as the exit function.



1  API Reference

1-60

If a MEX-function is locked, you cannot clear the MEX-file. Consequently, if you attempt
to clear a locked MEX-file, MATLAB does not call the ExitFcn.

In Fortran, declare the ExitFcn as external in the Fortran routine that calls
mexAtExit if it is not within the scope of the file.

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexatexit.c

See Also

mexLock, mexUnlock



 mexCallMATLAB (C and Fortran)

1-61

mexCallMATLAB (C and Fortran)

Call MATLAB function, user-defined function, or MEX-file

C Syntax

#include "mex.h"

int mexCallMATLAB(int nlhs, mxArray *plhs[], int nrhs,

  mxArray *prhs[], const char *functionName);

Fortran Syntax

#include "fintrf.h"

integer*4 mexCallMATLAB(nlhs, plhs, nrhs, prhs, functionName)

integer*4 nlhs, nrhs

mwPointer plhs(*), prhs(*)

character*(*) functionName

Arguments

nlhs

Number of output arguments
plhs

Array of pointers to output arguments
nrhs

Number of input arguments
prhs

Array of pointers to input arguments
functionName

Character string containing name of the MATLAB built-in function, operator, user-
defined function, or MEX-file you are calling



1  API Reference

1-62

Returns
0 if successful, and a nonzero value if unsuccessful.

Description
Call mexCallMATLAB to invoke internal MATLAB numeric functions, MATLAB
operators, user-defined functions, or other MEX-files. Both mexCallMATLAB and
mexEvalString execute MATLAB commands. Use mexCallMATLAB for returning
results (left side arguments) back to the MEX-file. The mexEvalString function cannot
return values to the MEX-file.

For a complete description of the input and output arguments passed to functionName,
see mexFunction. When calling the mexCallMATLAB function, the number of output
arguments nlhs and input arguments nrhs must be less than or equal to 50.

MATLAB allocates dynamic memory to store the mxArrays in plhs. MATLAB
automatically deallocates the dynamic memory when you clear the MEX-file. However,
if heap space is at a premium, call mxDestroyArray when you are finished with the
mxArrays plhs points to.

If functionName is an operator, place the operator inside a pair of single quotes, for
example, '+'.

Avoid using the mexCallMATLAB function in Simulink® S-functions. If you do, you must
use the mexMakeArrayPersistent function to create the plhs mxArray pointers
returned by mexCallMATLAB, and free them manually using the mxFree function, in
order to prevent abnormal termination.

Note It is possible to generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB.

This function returns two variables but only assigns one of them a value:

function [a,b] = foo[c]

a = 2*c;

If you then call foo using mexCallMATLAB, the unassigned output variable is now type
mxUNKNOWN_CLASS.



 mexCallMATLAB (C and Fortran)

1-63

Error Handling

If functionName detects an error, MATLAB terminates the MEX-file and
returns control to the MATLAB prompt. If you want to trap errors, use the
mexCallMATLABWithTrap function.

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexcallmatlab.c
• mexevalstring.c
• mexcallmatlabwithtrap.c

See the following examples in matlabroot/extern/examples/refbook.

• sincall.c
• sincall.F

See the following examples in matlabroot/extern/examples/mx.

• mxcreatecellmatrix.c
• mxcreatecellmatrixf.F
• mxisclass.c

See Also

mexFunction, mexCallMATLABWithTrap, mexEvalString,
mexMakeArrayPersistent, mxDestroyArray



1  API Reference

1-64

mexCallMATLABWithTrap (C and Fortran)
Call MATLAB function, user-defined function, or MEX-file and capture error information

C Syntax
#include "mex.h"

mxArray *mexCallMATLABWithTrap(int nlhs, mxArray *plhs[], int nrhs,

   mxArray *prhs[], const char *functionName);

Fortran Syntax
#include "fintrf.h"

mwPointer mexCallMATLABWithTrap(nlhs, plhs, nrhs, prhs, functionName)

integer*4 nlhs, nrhs

mwPointer plhs(*), prhs(*)

character*(*) functionName

Arguments

For more information about arguments, see mexCallMATLAB.

nlhs

Number of desired output arguments.
plhs

Array of pointers to output arguments.
nrhs

Number of input arguments.
prhs

Array of pointers to input arguments.
functionName

Character string containing the name of the MATLAB built-in function, operator,
function, or MEX-file that you are calling.



 mexCallMATLABWithTrap (C and Fortran)

1-65

Returns

NULL if no error occurred; otherwise, a pointer to an mxArray of class MException.

Description

The mexCallMATLABWithTrap function performs the same function as
mexCallMATLAB. However, if MATLAB detects an error when executing functionName,
MATLAB returns control to the line in the MEX-file immediately following the call to
mexCallMATLABWithTrap. For information about MException, see “ Respond to an
Exception”

See Also

mexCallMATLAB, MException



1  API Reference

1-66

mexErrMsgIdAndTxt (C and Fortran)
Display error message with identifier and return to MATLAB prompt

C Syntax
#include "mex.h"

void mexErrMsgIdAndTxt(const char *errorid, 

  const char *errormsg, ...);

Fortran Syntax
#include "fintrf.h"

subroutine mexErrMsgIdAndTxt(errorid, errormsg)

character*(*) errorid, errormsg

Arguments
errorid

String containing a MATLAB message identifier. For information on creating
identifiers, see “Message Identifiers”.

errormsg

String to display. In C, the string can include conversion specifications, used by the
ANSI® C printf function.

...

In C, any arguments used in the message. Each argument must have a corresponding
conversion specification.

Description

The mexErrMsgIdAndTxt function writes an error message to the MATLAB window.
For more information, see the error function syntax statement using a message
identifier. After the error message prints, MATLAB terminates the MEX-file and returns
control to the MATLAB prompt.



 mexErrMsgIdAndTxt (C and Fortran)

1-67

Calling mexErrMsgIdAndTxt does not clear the MEX-file from memory. So,
mexErrMsgIdAndTxt does not invoke the function registered through mexAtExit.

If your application called mxCalloc or one of the mxCreate* routines to allocate
memory, mexErrMsgIdAndTxt automatically frees the allocated memory.

Note If you get warnings when using mexErrMsgIdAndTxt, you might have a memory
management compatibility problem. For more information, see “Memory Management
Issues” in the External Interfaces documentation.

Remarks

In addition to the errorid and errormsg, the mexerrmsgtxt function determines
where the error occurred, and displays the following information. For example, in the
function foo, mexerrmsgtxt displays:

Error using foo

Examples

See the following examples in matlabroot/extern/examples/refbook.

• arrayFillGetPr.c
• matrixDivide.c
• timestwo.F
• xtimesy.F

Validate char Input

The following code snippet checks if input argument, prhs[0], is a string. If not, the
code displays a warning. If there is an error reading the input string, the code displays
an error message and terminates the MEX-file.

char *buf;

int buflen;

if (mxIsChar(prhs[0])) {



1  API Reference

1-68

    if (mxGetString(prhs[0], buf, buflen) == 0) {

        mexPrintf("The input string is:  %s\n", buf);

    }

    else { 

        mexErrMsgIdAndTxt("MyProg:ConvertString",

           "Could not convert string data.");

        // exit MEX-file

    } 

}

else {

    mexWarnMsgIdAndTxt("MyProg:InputString",

        "Input should be a string to print properly.");

}

// continue with processing

See Also
mexWarnMsgIdAndTxt

More About
• “Memory Considerations For Class Destructors”



 mexErrMsgTxt (C and Fortran)

1-69

mexErrMsgTxt (C and Fortran)
Display error message and return to MATLAB prompt

Note: mexErrMsgTxt is not recommended. Use mexErrMsgIdAndTxt instead.

C Syntax
#include "mex.h"

void mexErrMsgTxt(const char *errormsg);

Fortran Syntax
subroutine mexErrMsgTxt(errormsg)

character*(*) errormsg

Arguments

errormsg

String containing the error message to display

Description

mexErrMsgTxt writes an error message to the MATLAB window. After the error
message prints, MATLAB terminates the MEX-file and returns control to the MATLAB
prompt.

Calling mexErrMsgTxt does not clear the MEX-file from memory. So, mexErrMsgTxt
does not invoke the function registered through mexAtExit.

If your application called mxCalloc or one of the mxCreate* routines to allocate
memory, mexErrMsgTxt automatically frees the allocated memory.



1  API Reference

1-70

Note If you get warnings when using mexErrMsgTxt, you might have a memory
management compatibility problem. For more information, see “Memory Management
Issues”.

Remarks

In addition to the errormsg, the mexerrmsgtxt function determines where the error
occurred, and displays the following information. If an error labeled Print my error
message occurs in the function foo, mexerrmsgtxt displays:

Error using foo

Print my error message

See Also

mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt



 mexEvalString (C and Fortran)

1-71

mexEvalString (C and Fortran)
Execute MATLAB command in caller workspace

C Syntax
#include "mex.h"

int mexEvalString(const char *command);

Fortran Syntax
#include "fintrf.h"

integer*4 mexEvalString(command)

character*(*) command

Arguments

command

String containing MATLAB command to execute

Returns

0 if successful, and 1 if an error occurs.

Description

Call mexEvalString to invoke a MATLAB command in the workspace of the caller.

mexEvalString and mexCallMATLAB both execute MATLAB commands. Use
mexCallMATLAB for returning results (left side arguments) back to the MEX-file. The
mexEvalString function cannot return values to the MEX-file.

All arguments that appear to the right of an equal sign in the command string must be
current variables of the caller workspace.



1  API Reference

1-72

Do not use MATLAB function names for variable names. Common variable names that
conflict with function names include i, j, mode, char, size, or path. To determine
whether a particular name is associated with a MATLAB function, use the which
function. For more information, see “Variable Names”.

Error Handling

If command detects an error, MATLAB returns control to the MEX-
file and mexEvalString returns 1. If you want to trap errors, use the
mexEvalStringWithTrap function.

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexevalstring.c

See Also

mexCallMATLAB, mexEvalStringWithTrap



 mexEvalStringWithTrap (C and Fortran)

1-73

mexEvalStringWithTrap (C and Fortran)
Execute MATLAB command in caller workspace and capture error information

C Syntax
#include "mex.h"

mxArray *mexEvalStringWithTrap(const char *command);

Fortran Syntax
#include "fintrf.h"

mwPointer mexEvalStringWithTrap(command)

character*(*) command

Arguments
command

String containing the MATLAB command to execute

Returns
Object ME of class MException

Description
The mexEvalStringWithTrap function performs the same function as
mexEvalString. However, if MATLAB detects an error when executing command,
MATLAB returns control to the line in the MEX-file immediately following the call to
mexEvalStringWithTrap.

See Also
mexEvalString, MException, mexCallMATLAB



1  API Reference

1-74

mexFunction (C and Fortran)
Entry point to C/C++ or Fortran MEX-file

C Syntax
#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, 

  const mxArray *prhs[])

Fortran Syntax
#include "fintrf.h"

subroutine mexFunction(nlhs, plhs, nrhs, prhs)

integer nlhs, nrhs

mwPointer plhs(*), prhs(*)

Arguments
nlhs

Number of expected output mxArrays
plhs

Array of pointers to the expected output mxArrays
nrhs

Number of input mxArrays
prhs

Array of pointers to the input mxArrays. Do not modify any prhs values in your
MEX-file. Changing the data in these read-only mxArrays can produce undesired
side effects.

Description

mexFunction is not a routine you call. Rather, mexFunction is the name of the
gateway function in C (subroutine in Fortran) which every MEX-file requires. When



 mexFunction (C and Fortran)

1-75

you invoke a MEX-function, MATLAB software finds and loads the corresponding MEX-
file of the same name. MATLAB then searches for a symbol named mexFunction
within the MEX-file. If it finds one, it calls the MEX-function using the address of the
mexFunction symbol. MATLAB displays an error message if it cannot find a routine
named mexFunction inside the MEX-file.

When you invoke a MEX-file, MATLAB automatically seeds nlhs, plhs, nrhs, and prhs
with the caller's information. In the syntax of the MATLAB language, functions have the
general form:

[a,b,c,...] = fun(d,e,f,...)

where the ... denotes more items of the same format. The a,b,c... are left-side
output arguments, and the d,e,f... are right-side input arguments. The arguments
nlhs and nrhs contain the number of left side and right side arguments, respectively.
prhs is an array of mxArray pointers whose length is nrhs. plhs is an array whose
length is nlhs, where your function must set pointers for the output mxArrays.

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexfunction.c
• mexlockf.F

More About
• “Introducing MEX-Files”



1  API Reference

1-76

mexFunctionName (C and Fortran)
Name of current MEX-function

C Syntax
#include "mex.h"

const char *mexFunctionName(void);

Fortran Syntax
#include "fintrf.h"

character*(*) mexFunctionName()

Returns

Name of the current MEX-function.

Description

mexFunctionName returns the name of the current MEX-function.

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexgetarray.c



 mexGet (C)

1-77

mexGet (C)

Value of specified graphics property

Compatibility

Do not use mexGet. Use mxGetProperty instead.

C Syntax

#include "mex.h"

const mxArray *mexGet(double handle, const char *property);

Arguments

handle

Handle to a particular graphics object
property

Graphics property

Returns

Value of the specified property in the specified graphics object on success. Returns NULL
on failure. Do not modify the return argument from mexGet. Changing the data in a
const (read-only) mxArray can produce undesired side effects.

Description

Call mexGet to get the value of the property of a certain graphics object. mexGet is the
API equivalent of the MATLAB get function. To set a graphics property value, call
mexSet.



1  API Reference

1-78

See Also

mxGetProperty, mxSetProperty



 mexGetVariable (C and Fortran)

1-79

mexGetVariable (C and Fortran)
Copy of variable from specified workspace

C Syntax
#include "mex.h"

mxArray *mexGetVariable(const char *workspace, const char 

  *varname);

Fortran Syntax
#include "fintrf.h"

mwPointer mexGetVariable(workspace, varname)

character*(*) workspace, varname

Arguments

workspace

Specifies where mexGetVariable searches for array varname. The possible values
are:

base Search for the variable in the base workspace.
caller Search for the variable in the caller workspace.
global Search for the variable in the global workspace.

varname

Name of the variable to copy

Returns

Copy of the variable on success. Returns NULL in C (0 on Fortran) on failure. A common
cause of failure is specifying a variable that is not currently in the workspace. Perhaps
the variable was in the workspace at one time but has since been cleared.



1  API Reference

1-80

Description

Call mexGetVariable to get a copy of the specified variable. The returned mxArray
contains a copy of all the data and characteristics that the variable had in the other
workspace. Modifications to the returned mxArray do not affect the variable in the
workspace unless you write the copy back to the workspace with mexPutVariable.

Use mxDestroyArray to destroy the mxArray created by this routine when you are
finished with it.

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexgetarray.c

See Also

mexGetVariablePtr, mexPutVariable, mxDestroyArray



 mexGetVariablePtr (C and Fortran)

1-81

mexGetVariablePtr (C and Fortran)
Read-only pointer to variable from another workspace

C Syntax
#include "mex.h"

const mxArray *mexGetVariablePtr(const char *workspace, 

  const char *varname);

Fortran Syntax
#include "fintrf.h"

mwPointer mexGetVariablePtr(workspace, varname)

character*(*) workspace, varname

Arguments

workspace

Specifies which workspace you want mexGetVariablePtr to search. The possible
values are

base Search for the variable in the base workspace.
caller Search for the variable in the caller workspace.
global Search for the variable in the global workspace.

varname

Name of a variable in another workspace. This is a variable name, not an mxArray
pointer.

Returns

Read-only pointer to the mxArray on success. Returns NULL in C (0 in Fortran) on
failure.



1  API Reference

1-82

Description

Call mexGetVariablePtr to get a read-only pointer to the specified variable, varname,
into your MEX-file workspace. This command is useful for examining an mxArray's data
and characteristics. If you want to change data or characteristics, use mexGetVariable
(along with mexPutVariable) instead of mexGetVariablePtr.

If you simply want to examine data or characteristics, mexGetVariablePtr offers
superior performance because the caller wants to pass only a pointer to the array.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxislogical.c

See Also

mexGetVariable



 mexIsGlobal (C and Fortran)

1-83

mexIsGlobal (C and Fortran)
Determine if variable has global scope

Compatibility

mexIsGlobal has been removed. Use mxIsFromGlobalWS instead.

C Syntax
#include "matrix.h"

bool mexIsGlobal(const mxArray *pm);

Fortran Syntax
#include "fintrf.h"

integer*4 mexIsGlobal(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 0 (false).

Description

Use mexIsGlobal to determine if the specified mxArray has global scope.



1  API Reference

1-84

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxislogical.c

See Also

mexGetVariable, mexGetVariablePtr, mexPutVariable, global



 mexIsLocked (C and Fortran)

1-85

mexIsLocked (C and Fortran)

Determine if MEX-file is locked

C Syntax

#include "mex.h"

bool mexIsLocked(void);

Fortran Syntax

#include "fintrf.h"

integer*4 mexIsLocked()

Returns

Logical 1 (true) if the MEX-file is locked; logical 0 (false) if the file is unlocked.

Description

Call mexIsLocked to determine if the MEX-file is locked. By default, MEX-files are
unlocked, meaning you can clear the MEX-file at any time.

To unlock a MEX-file, call mexUnlock.

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexlock.c
• mexlockf.F



1  API Reference

1-86

See Also

mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent, mexUnlock,
clear



 mexLock (C and Fortran)

1-87

mexLock (C and Fortran)
Prevent clearing MEX-file from memory

C Syntax
#include "mex.h"

void mexLock(void);

Fortran Syntax
#include "fintrf.h"

subroutine mexLock()

Description

By default, MEX-files are unlocked, meaning you can clear them at any time. Call
mexLock to prohibit clearing a MEX-file.

To unlock a MEX-file, call mexUnlock. Do not use the munlock function.

mexLock increments a lock count. If you call mexLock n times, call mexUnlock n times
to unlock your MEX-file.

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexlock.c
• mexlockf.F

See Also

mexIsLocked, mexMakeArrayPersistent, mexMakeMemoryPersistent, mexUnlock,
clear



1  API Reference

1-88

mexMakeArrayPersistent (C and Fortran)

Make array persist after MEX-file completes

C Syntax

#include "mex.h"

void mexMakeArrayPersistent(mxArray *pm);

Fortran Syntax

#include "fintrf.h"

subroutine mexMakeArrayPersistent(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray created by an mxCreate* function

Description

By default, an mxArray allocated by an mxCreate* function is not persistent. The
MATLAB memory management facility automatically frees a nonpersistent mxArray
when the MEX-function finishes. If you want the mxArray to persist through multiple
invocations of the MEX-function, call the mexMakeArrayPersistent function.

Note If you create a persistent mxArray, you are responsible for destroying it using
mxDestroyArray when the MEX-file is cleared. If you do not destroy a persistent
mxArray, MATLAB leaks memory. See mexAtExit to see how to register a function that
gets called when the MEX-file is cleared. See mexLock to see how to lock your MEX-file
so that it is never cleared.



 mexMakeArrayPersistent (C and Fortran)

1-89

See Also

mexAtExit, mxDestroyArray, mexLock, mexMakeMemoryPersistent, and the
mxCreate* functions



1  API Reference

1-90

mexMakeMemoryPersistent (C and Fortran)

Make memory allocated by MATLAB software persist after MEX-function completes

C Syntax

#include "mex.h"

void mexMakeMemoryPersistent(void *ptr);

Fortran Syntax

#include "fintrf.h"

subroutine mexMakeMemoryPersistent(ptr)

mwPointer ptr

Arguments

ptr

Pointer to the beginning of memory allocated by one of the MATLAB memory
allocation routines

Description

By default, memory allocated by MATLAB is nonpersistent, so it is freed
automatically when the MEX-function finishes. If you want the memory to persist, call
mexMakeMemoryPersistent.

Note If you create persistent memory, you are responsible for freeing it when the MEX-
function is cleared. If you do not free the memory, MATLAB leaks memory. To free
memory, use mxFree. See mexAtExit to see how to register a function that gets called
when the MEX-function is cleared. See mexLock to see how to lock your MEX-function so
that it is never cleared.



 mexMakeMemoryPersistent (C and Fortran)

1-91

See Also

mexAtExit, mexLock, mexMakeArrayPersistent, mxCalloc, mxFree, mxMalloc,
mxRealloc



1  API Reference

1-92

mexPrintf (C and Fortran)
ANSI C PRINTF-style output routine

C Syntax
#include "mex.h"

int mexPrintf(const char *message, ...);

Fortran Syntax
#include "fintrf.h"

integer*4 mexPrintf(message)

character*(*) message

Arguments
message

String to display. In C, the string can include conversion specifications, used by the
ANSI C printf function.

...

In C, any arguments used in the message. Each argument must have a corresponding
conversion specification.

Returns

Number of characters printed including characters specified with backslash codes, such
as \n and \b.

Description

This routine prints a string on the screen and in the diary (if the diary is in use). It
provides a callback to the standard C printf routine already linked inside MATLAB
software, which avoids linking the entire stdio library into your MEX-file.



 mexPrintf (C and Fortran)

1-93

In a C MEX-file, call mexPrintf instead of printf to display a string.

Note If you want the literal % in your message, use %% in the message string since % has
special meaning to printf. Failing to do so causes unpredictable results.

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexfunction.c

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c

See Also

mexErrMsgIdAndTxt, mexErrMsgTxt, mexWarnMsgIdAndTxt, mexWarnMsgTxt



1  API Reference

1-94

mexPutVariable (C and Fortran)
Array from MEX-function into specified workspace

C Syntax
#include "mex.h"

int mexPutVariable(const char *workspace, const char *varname, 

  const mxArray *pm);

Fortran Syntax
#include "fintrf.h"

integer*4 mexPutVariable(workspace, varname, pm)

character*(*) workspace, varname

mwPointer pm

Arguments
workspace

Specifies scope of the array you are copying. Values for workspace are:

base Copy mxArray to the base workspace.
caller Copy mxArray to the caller workspace.
global Copy mxArray to the list of global variables.

varname

Name of mxArray in the workspace
pm

Pointer to the mxArray

Returns

0 on success; 1 on failure. A possible cause of failure is that pm is NULL in C (0 in
Fortran).



 mexPutVariable (C and Fortran)

1-95

Description

Call mexPutVariable to copy the mxArray, at pointer pm, from your MEX-function
into the specified workspace. MATLAB software gives the name, varname, to the copied
mxArray in the receiving workspace.

mexPutVariable makes the array accessible to other entities, such as MATLAB, user-
defined functions, or other MEX-functions.

If a variable of the same name exists in the specified workspace, mexPutVariable
overwrites the previous contents of the variable with the contents of the new mxArray.
For example, suppose the MATLAB workspace defines variable Peaches as:

Peaches

1     2     3     4

and you call mexPutVariable to copy Peaches into the same workspace:

mexPutVariable("base", "Peaches", pm)

The value passed by mexPutVariable replaces the old value of Peaches.

Do not use MATLAB function names for variable names. Common variable names that
conflict with function names include i, j, mode, char, size, or path. To determine
whether a particular name is associated with a MATLAB function, use the which
function.

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexgetarray.c

See Also

mexGetVariable



1  API Reference

1-96

mexSet (C)

Set value of specified graphics property

Compatibility

Do not use mexSet. Use mxSetProperty instead.

C Syntax

#include "mex.h"

int mexSet(double handle, const char *property,

  mxArray *value);

Arguments

handle

Handle to a particular graphics object
property

String naming a graphics property
value

Pointer to an mxArray holding the new value to assign to the property

Returns

0 on success; 1 on failure. Possible causes of failure include:

• Specifying a nonexistent property.
• Specifying an illegal value for that property, for example, specifying a string value for

a numerical property.



 mexSet (C)

1-97

Description

Call mexSet to set the value of the property of a certain graphics object. mexSet is the
API equivalent of the MATLAB set function. To get the value of a graphics property, call
mexGet.

See Also

mxGetProperty, mxSetProperty



1  API Reference

1-98

mexSetTrapFlag (C and Fortran)
Control response of MEXCALLMATLAB to errors

C Syntax
#include "mex.h"

void mexSetTrapFlag(int trapflag);

Note: mexSetTrapFlag will be removed in a future version. Use
mexCallMATLABWithTrap instead.

Fortran Syntax
subroutine mexSetTrapFlag(trapflag)

integer*4 trapflag

Arguments

trapflag

Control flag. Possible values are:

0 On error, control returns to the MATLAB prompt.
1 On error, control returns to your MEX-file.

Description

Call mexSetTrapFlag to control the MATLAB response to errors in mexCallMATLAB.

If you do not call mexSetTrapFlag, then whenever MATLAB detects an error in a call to
mexCallMATLAB, MATLAB automatically terminates the MEX-file and returns control
to the MATLAB prompt. Calling mexSetTrapFlag with trapflag set to 0 is equivalent
to not calling mexSetTrapFlag at all.



 mexSetTrapFlag (C and Fortran)

1-99

If you call mexSetTrapFlag and set the trapflag to 1, then whenever MATLAB
detects an error in a call to mexCallMATLAB, MATLAB does not automatically terminate
the MEX-file. Rather, MATLAB returns control to the line in the MEX-file immediately
following the call to mexCallMATLAB. The MEX-file is then responsible for taking an
appropriate response to the error.

If you call mexSetTrapFlag, the value of the trapflag you set remains in effect until
the next call to mexSetTrapFlag within that MEX-file or, if there are no more calls
to mexSetTrapFlag, until the MEX-file exits. If a routine defined in a MEX-file calls
another MEX-file, MATLAB:

1 Saves the current value of the trapflag in the first MEX-file.
2 Calls the second MEX-file with the trapflag initialized to 0 within that file.
3 Restores the saved value of trapflag in the first MEX-file when the second MEX-

file exits.

See Also

mexCallMATLAB, mexCallMATLABWithTrap, mexAtExit, mexErrMsgTxt



1  API Reference

1-100

mexUnlock (C and Fortran)
Allow clearing MEX-file from memory

C Syntax
#include "mex.h"

void mexUnlock(void);

Fortran Syntax
#include "fintrf.h"

subroutine mexUnlock()

Description

By default, MEX-files are unlocked, meaning you can clear them at any time. Calling
mexLock locks a MEX-file so that you cannot clear it from memory. Call mexUnlock to
remove the lock.

mexLock increments a lock count. If you called mexLock n times, call mexUnlock n
times to unlock your MEX-file.

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexlock.c
• mexlockf.F

See Also

mexIsLocked, mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent,
clear



 mexWarnMsgIdAndTxt (C and Fortran)

1-101

mexWarnMsgIdAndTxt (C and Fortran)
Warning message with identifier

C Syntax
#include "mex.h"

void mexWarnMsgIdAndTxt(const char *warningid,

  const char *warningmsg, ...);

Fortran Syntax
#include "fintrf.h"

subroutine mexWarnMsgIdAndTxt(warningid, warningmsg)

character*(*) warningid, warningmsg

Arguments

warningid

String containing a MATLAB message identifier. For information on creating
identifiers, see “Message Identifiers”.

warningmsg

String to display. In C, the string can include conversion specifications, used by the
ANSI C printf function.

...

In C, any arguments used in the message. Each argument must have a corresponding
conversion specification.

Description

The mexWarnMsgIdAndTxt function writes a warning message to the MATLAB window.
For more information, see the warning function syntax statement using a message
identifier.



1  API Reference

1-102

Unlike mexErrMsgIdAndTxt, calling mexWarnMsgIdAndTxt does not terminate the
MEX-file.

See Also

mexErrMsgIdAndTxt



 mexWarnMsgTxt (C and Fortran)

1-103

mexWarnMsgTxt (C and Fortran)
Warning message

Note: mexWarnMsgTxt is not recommended. Use mexWarnMsgIdAndTxt instead.

C Syntax
#include "mex.h"

void mexWarnMsgTxt(const char *warningmsg);

Fortran Syntax
subroutine mexWarnMsgTxt(warningmsg)

character*(*) warningmsg

Arguments

warningmsg

String containing the warning message to display

Description

mexWarnMsgTxt causes MATLAB software to display the contents of warningmsg.
mexWarnMsgTxt does not terminate the MEX-file.

See Also

mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt



1  API Reference

1-104

mwIndex (C and Fortran)
Type for index values

Description

mwIndex is a type that represents index values, such as indices into arrays. Use this
function for cross-platform flexibility. By default, mwIndex is equivalent to int in C.
When using the mex -largeArrayDims switch, mwIndex is equivalent to size_t in
C. In Fortran, mwIndex is similarly equivalent to INTEGER*4 or INTEGER*8, based on
platform and compilation flags.

The C header file containing this type is:

#include "matrix.h"

In Fortran, mwIndex is a preprocessor macro. The Fortran header file containing this
type is:

#include "fintrf.h"

See Also

mex, mwSize, mwSignedIndex



 mwPointer (Fortran)

1-105

mwPointer (Fortran)
Platform-independent pointer type

Description

mwPointer is a preprocessor macro that declares the appropriate Fortran type
representing a pointer to an mxArray or to other data that is not of a native Fortran
type, such as memory allocated by mxMalloc. On 32-bit platforms, the Fortran type that
represents a pointer is INTEGER*4; on 64-bit platforms, it is INTEGER*8. The Fortran
preprocessor translates mwPointer to the Fortran declaration that is appropriate for the
platform on which you compile your file.

If your Fortran compiler supports preprocessing, you can use mwPointer to declare
functions, arguments, and variables that represent pointers. If you cannot use
mwPointer, ensure that your declarations have the correct size for the platform on which
you are compiling Fortran code.

The Fortran header file containing this type is:

#include "fintrf.h"

Examples

This example declares the arguments for mexFunction in a Fortran MEX-file:

subroutine mexFunction(nlhs, plhs, nrhs, prhs)

mwPointer plhs(*), prhs(*)

integer nlhs, nrhs

For additional examples, see the Fortran files with names ending in .F in the
matlabroot/extern/examples folder.

Introduced in R2006a



1  API Reference

1-106

mwSignedIndex (C and Fortran)
Signed integer type for size values

Description

mwSignedIndex is a signed integer type that represents size values, such as array
dimensions. Use this function for cross-platform flexibility. By default, mwSignedIndex
is equivalent to ptrdiff_t in C++. In Fortran, mwSignedIndex is similarly equivalent
to INTEGER*4 or INTEGER*8, based on platform and compilation flags.

The C header file containing this type is:

#include "matrix.h"

The Fortran header file containing this type is:

#include "fintrf.h"

See Also

mwSize, mwIndex



 mwSize (C and Fortran)

1-107

mwSize (C and Fortran)
Type for size values

Description

mwSize is a type that represents size values, such as array dimensions. Use this function
for cross-platform flexibility. By default, mwSize is equivalent to int in C. When using
the mex -largeArrayDims switch, mwSize is equivalent to size_t in C. In Fortran,
mwSize is similarly equivalent to INTEGER*4 or INTEGER*8, based on platform and
compilation flags.

The C header file containing this type is:

#include "matrix.h"

In Fortran, mwSize is a preprocessor macro. The Fortran header file containing this type
is:

#include "fintrf.h"

See Also

mex, mwIndex, mwSignedIndex



1  API Reference

1-108

mxAddField (C and Fortran)

Add field to structure array

C Syntax

#include "matrix.h"

extern int mxAddField(mxArray *pm, const char *fieldname);

Fortran Syntax

integer*4 mxAddField(pm, fieldname)

mwPointer pm

character*(*) fieldname

Arguments

pm

Pointer to a structure mxArray
fieldname

Name of the field you want to add

Returns

Field number on success, or -1 if inputs are invalid or an out-of-memory condition occurs.

Description

Call mxAddField to add a field to a structure array. Create the values with the
mxCreate* functions and use mxSetFieldByNumber to set the individual values for the
field.



 mxAddField (C and Fortran)

1-109

See Also

mxRemoveField, mxSetFieldByNumber



1  API Reference

1-110

mxArray (C)
Type for MATLAB array

Description

The fundamental type underlying MATLAB data. For information on how the MATLAB
array works with MATLAB-supported variables, see “MATLAB Data”.

mxArray is a C language opaque type.

All C MEX-files start with a gateway routine, called mexFunction, which requires
mxArray for both input and output parameters. For information about the C MEX-file
gateway routine, see “Components of MEX-File”.

Once you have MATLAB data in your MEX-file, use functions in the MX Matrix Library
to manipulate the data, and functions in the MEX Library to perform operations in the
MATLAB environment. You use mxArray to pass data to and from these functions.

Use any of the mxCreate* functions to create data, and the corresponding
mxDestroyArray function to free memory.

The header file containing this type is:

#include "matrix.h"

Example

See the following examples in matlabroot/extern/examples/mx.

• mxcreatecharmatrixfromstr.c

Tips

• For information about data in MATLAB language scripts and functions, see “Data
Types”.



 mxArray (C)

1-111

• For troubleshooting mxArray errors in other MathWorks products, search the
documentation for that product, or see MATLAB Answers™ topic "Subscripting into
an mxArray is not supported".

See Also

mexFunction, mxClassID, mxCreateDoubleMatrix, mxCreateNumericArray,
mxCreateString, mxDestroyArray, mxGetData, mxSetData

http://www.mathworks.com/matlabcentral/answers/13297-subscripting-into-an-mxarray
http://www.mathworks.com/matlabcentral/answers/13297-subscripting-into-an-mxarray


1  API Reference

1-112

mxArrayToString (C)
Array to string

C Syntax
#include "matrix.h"

char *mxArrayToString(const mxArray *array_ptr);

Arguments

array_ptr

Pointer to a string mxArray; that is, a pointer to an mxArray having the
mxCHAR_CLASS class.

Returns

C-style string. Returns NULL on failure. Possible reasons for failure include out of
memory and specifying an mxArray that is not a string mxArray.

Description

Call mxArrayToString to copy the character data of a string mxArray into a C-style
string. The C-style string is always terminated with a NULL character.

If the string array contains several rows, they are copied, one column at a time, into one
long string array. This function is similar to mxGetString, except that

• It does not require the length of the string as an input.
• It supports multibyte encoded characters.

mxArrayToString does not free the dynamic memory that the char pointer points to.
Consequently, you should typically free the string (using mxFree) immediately after you
have finished using it.



 mxArrayToString (C)

1-113

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexatexit.c

See the following examples in matlabroot/extern/examples/mx.

• mxcreatecharmatrixfromstr.c
• mxislogical.c

See Also

mxArrayToUTF8String, mxCreateCharArray, mxCreateCharMatrixFromStrings,
mxCreateString, mxGetString



1  API Reference

1-114

mxArrayToUTF8String (C)
Array to string in UTF-8 encoding

C Syntax
#include "matrix.h"

char *mxArrayToUTF8String(const mxArray *array_ptr);

Arguments

array_ptr

Pointer to a string mxArray; that is, a pointer to an mxArray having the
mxCHAR_CLASS class.

Returns

C-style string in UTF-8 encoding. Returns NULL on failure. Possible reasons for failure
include out of memory and specifying an mxArray that is not a string mxArray.

Description

Call mxArrayToUTF8String to copy the character data of a string mxArray into a C-
style string.

mxArrayToUTF8String does not free the dynamic memory that the char pointer points
to. Use mxFree to free memory.

See Also

mxArrayToString, mxFree, mxCreateCharArray, mxCreateString, mxGetString

Introduced in R2015a



 mxAssert (C)

1-115

mxAssert (C)
Check assertion value for debugging purposes

C Syntax
#include "matrix.h"

void mxAssert(int expr, char *error_message);

Arguments

expr

Value of assertion
error_message

Description of why assertion failed

Description

Like the ANSI C assert macro, mxAssert checks the value of an assertion, and
continues execution only if the assertion holds. If expr evaluates to logical 1 (true),
mxAssert does nothing. If expr evaluates to logical 0 (false), mxAssert terminates the
MEX-file and prints an error to the MATLAB command window. The error contains the
failed assertion's expression, the file name and line number where the failed assertion
occurred, and the error_message string. The error_message string allows you to
specify a better description of why the assertion failed. Use an empty string if you do not
want a description to follow the failed assertion message.

The mex script turns off these assertions when building optimized MEX-functions, so
use this for debugging purposes only. Build the MEX-file using the syntax mex -g
filename in order to use mxAssert.

Assertions are a way of maintaining internal consistency of logic. Use them to keep
yourself from misusing your own code and to prevent logical errors from propagating
before they are caught; do not use assertions to prevent users of your code from misusing
it.



1  API Reference

1-116

Assertions can be taken out of your code by the C preprocessor. You can use these
checks during development and then remove them when the code works properly, letting
you use them for troubleshooting during development without slowing down the final
product.

See Also

mxAssertS, mexErrMsgIdAndTxt



 mxAssertS (C)

1-117

mxAssertS (C)
Check assertion value without printing assertion text

C Syntax
#include "matrix.h"

void mxAssertS(int expr, char *error_message);

Arguments

expr

Value of assertion
error_message

Description of why assertion failed

Description

mxAssertS is like mxAssert, except mxAssertS does not print the text of the failed
assertion.

See Also

mxAssert



1  API Reference

1-118

mxCalcSingleSubscript (C and Fortran)
Offset from first element to desired element

C Syntax
#include "matrix.h"

mwIndex mxCalcSingleSubscript(const mxArray *pm, mwSize nsubs, 

    mwIndex *subs);

Fortran Syntax
mwIndex mxCalcSingleSubscript(pm, nsubs, subs)

mwPointer pm

mwSize nsubs

mwIndex subs

Arguments

pm

Pointer to an mxArray
nsubs

Number of elements in the subs array. Typically, you set nsubs equal to the number
of dimensions in the mxArray that pm points to.

subs
An array of integers. Each value in the array specifies that dimension's subscript.
In C syntax, the value in subs[0] specifies the row subscript, and the value in
subs[1] specifies the column subscript. Use zero-based indexing for subscripts. For
example, to express the starting element of a two-dimensional mxArray in subs, set
subs[0] to 0 and subs[1] to 0.

In Fortran syntax, the value in subs(1) specifies the row subscript, and the value
in subs(2) specifies the column subscript. Use 1-based indexing for subscripts. For
example, to express the starting element of a two-dimensional mxArray in subs, set
subs(1) to 1 and subs(2) to 1.



 mxCalcSingleSubscript (C and Fortran)

1-119

Returns

The number of elements, or index, between the start of the mxArray and the specified
subscript. This is the linear index equivalent of the subscripts. Many MX Matrix Library
routines (for example, mxGetField) require an index as an argument.

If subs describes the starting element of an mxArray, mxCalcSingleSubscript
returns 0. If subs describes the final element of an mxArray, mxCalcSingleSubscript
returns N-1 (where N is the total number of elements).

Description

Call mxCalcSingleSubscript to determine how many elements there are between the
beginning of the mxArray and a given element of that mxArray. The function converts
subscripts to linear indices.

For example, given a subscript like (5,7), mxCalcSingleSubscript returns the
distance from the first element of the array to the (5,7) element. Remember that the
mxArray data type internally represents all data elements in a one-dimensional array
no matter how many dimensions the MATLAB mxArray appears to have. For examples
showing the internal representation, see “Data Storage”.

Avoid using mxCalcSingleSubscript to traverse the elements of an array. In C,
it is more efficient to do this by finding the array's starting address and then using
pointer autoincrementing to access successive elements. For example, to find the starting
address of a numerical array, call mxGetPr or mxGetPi.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxcalcsinglesubscript.c

See Also

mxGetCell, mxSetCell



1  API Reference

1-120

mxCalloc (C and Fortran)

Allocate dynamic memory for array, initialized to 0, using MATLAB memory manager

C Syntax

#include "matrix.h"

#include <stdlib.h>

void *mxCalloc(mwSize n, mwSize size);

Fortran Syntax

mwPointer mxCalloc(n, size)

mwSize n, size

Arguments

n

Number of elements to allocate. This must be a nonnegative number.
size

Number of bytes per element. (The C sizeof operator calculates the number of bytes
per element.)

Returns

Pointer to the start of the allocated dynamic memory, if successful. If unsuccessful in a
MAT or engine standalone application, mxCalloc returns NULL in C (0 in Fortran). If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the MATLAB
prompt.

mxCalloc is unsuccessful when there is insufficient free heap space.



 mxCalloc (C and Fortran)

1-121

Description

mxCalloc allocates contiguous heap space sufficient to hold n elements of size bytes
each, and initializes this newly allocated memory to 0. Use mxCalloc instead of the
ANSI C calloc function to allocate memory in MATLAB applications.

In MEX-files, but not MAT or engine applications, mxCalloc registers the allocated
memory with the MATLAB memory manager. When control returns to the MATLAB
prompt, the memory manager then automatically frees, or deallocates, this memory.

How you manage the memory created by this function depends on the purpose of the
data assigned to it. If you assign it to an output argument in plhs[] using the mxSetPr
function, MATLAB is responsible for freeing the memory.

If you use the data internally, the MATLAB memory manager maintains a list of all
memory allocated by the function and automatically frees (deallocates) the memory
when control returns to the MATLAB prompt. In general, we recommend that MEX-file
functions destroy their own temporary arrays and free their own dynamically allocated
memory. It is more efficient to perform this cleanup in the source MEX-file than to rely
on the automatic mechanism. Therefore, when you finish using the memory allocated by
this function, call mxFree to deallocate the memory.

If you do not assign this data to an output argument, and you want it to persist after the
MEX-file completes, call mexMakeMemoryPersistent after calling this function. If you
write a MEX-file with persistent memory, be sure to register a mexAtExit function to
free allocated memory in the event your MEX-file is cleared.

Examples

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See the following examples in matlabroot/extern/examples/refbook.

• arrayFillSetData.c
• phonebook.c
• revord.c

See the following examples in matlabroot/extern/examples/mx.



1  API Reference

1-122

• mxcalcsinglesubscript.c
• mxsetdimensions.c

See Also

mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mxDestroyArray, mxFree, mxMalloc, mxRealloc



 mxChar (C)

1-123

mxChar (C)
Type for string array

Description

MATLAB stores an mxArray string as type mxChar to represent the C-style char type.
MATLAB uses 16-bit unsigned integer character encoding for Unicode characters.

The header file containing this type is:

#include "matrix.h"

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxmalloc.c
• mxcreatecharmatrixfromstr.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c

Tips

• For information about data in MATLAB language scripts and functions, see “Data
Types”.

See Also

mxCreateCharArray



1  API Reference

1-124

mxClassID (C)
Enumerated value identifying class of array

C Syntax
typedef enum {

        mxUNKNOWN_CLASS,

        mxCELL_CLASS,

        mxSTRUCT_CLASS,

        mxLOGICAL_CLASS,

        mxCHAR_CLASS,

        mxVOID_CLASS,

        mxDOUBLE_CLASS,

        mxSINGLE_CLASS,

        mxINT8_CLASS,

        mxUINT8_CLASS,

        mxINT16_CLASS,

        mxUINT16_CLASS,

        mxINT32_CLASS,

        mxUINT32_CLASS,

        mxINT64_CLASS,

        mxUINT64_CLASS,

        mxFUNCTION_CLASS

} mxClassID;

Constants
mxUNKNOWN_CLASS

Undetermined class. You cannot specify this category for an mxArray; however, if
mxGetClassID cannot identify the class, it returns this value.

mxCELL_CLASS

Identifies a cell mxArray.
mxSTRUCT_CLASS

Identifies a structure mxArray.
mxLOGICAL_CLASS

Identifies a logical mxArray, an mxArray of mxLogical data.



 mxClassID (C)

1-125

mxCHAR_CLASS

Identifies a string mxArray, an mxArray whose data is represented as mxChar.
mxVOID_CLASS

Reserved.
mxDOUBLE_CLASS

Identifies a numeric mxArray whose data is stored as the type specified in the
MATLAB Primitive Types table.

mxSINGLE_CLASS

Identifies a numeric mxArray whose data is stored as the type specified in the
MATLAB Primitive Types table.

mxINT8_CLASS

Identifies a numeric mxArray whose data is stored as the type specified in the
MATLAB Primitive Types table.

mxUINT8_CLASS

Identifies a numeric mxArray whose data is stored as the type specified in the
MATLAB Primitive Types table.

mxINT16_CLASS

Identifies a numeric mxArray whose data is stored as the type specified in the
MATLAB Primitive Types table.

mxUINT16_CLASS

Identifies a numeric mxArray whose data is stored as the type specified in the
MATLAB Primitive Types table.

mxINT32_CLASS

Identifies a numeric mxArray whose data is stored as the type specified in the
MATLAB Primitive Types table.

mxUINT32_CLASS

Identifies a numeric mxArray whose data is stored as the type specified in the
MATLAB Primitive Types table.

mxINT64_CLASS

Identifies a numeric mxArray whose data is stored as the type specified in the
MATLAB Primitive Types table.

mxUINT64_CLASS



1  API Reference

1-126

Identifies a numeric mxArray whose data is stored as the type specified in the
MATLAB Primitive Types table.

mxFUNCTION_CLASS

Identifies a function handle mxArray.

Description

Various Matrix Library functions require or return an mxClassID argument.
mxClassID identifies how the mxArray represents its data elements.

The following table shows MATLAB types with their equivalent C types. Use the type
from the right-most column for reading mxArrays with the mxClassID value shown in
the left column.

MATLAB Primitive Types

mxClassID Value MATLAB Type MEX Type C Primitive Type

mxINT8_CLASS int8 int8_T char, byte
mxUINT8_CLASS uint8 uint8_T unsigned char, byte
mxINT16_CLASS int16 int16_T short

mxUINT16_CLASS uint16 uint16_T unsigned short

mxINT32_CLASS int32 int32_T int

mxUINT32_CLASS uint32 uint32_T unsigned int

mxINT64_CLASS int64 int64_T long long

mxUINT64_CLASS uint64 uint64_T unsigned long long

mxSINGLE_CLASS single float float

mxDOUBLE_CLASS double double double

Examples

See the following examples in matlabroot/extern/examples/mex.

• explore.c



 mxClassID (C)

1-127

See Also

mxGetClassID, mxCreateNumericArray



1  API Reference

1-128

mxClassIDFromClassName (Fortran)

Identifier corresponding to class

Fortran Syntax

integer*4 mxClassIDFromClassName(classname)

character*(*) classname

Arguments

classname

character array specifying a MATLAB class name. For a list of valid classname
choices, see the mxIsClass reference page.

Returns

Numeric identifier used internally by MATLAB software to represent the MATLAB class,
classname. Returns unknown if classname is not a recognized MATLAB class.

Description

Use mxClassIDFromClassName to obtain an identifier for any MATLAB
class. This function is most commonly used to provide a classid argument to
mxCreateNumericArray and mxCreateNumericMatrix.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• matsqint8.F



 mxClassIDFromClassName (Fortran)

1-129

See Also

mxGetClassName, mxCreateNumericArray, mxCreateNumericMatrix, mxIsClass



1  API Reference

1-130

mxComplexity (C)
Flag specifying whether array has imaginary components

C Syntax
typedef enum mxComplexity {mxREAL=0, mxCOMPLEX};

Constants

mxREAL

Identifies an mxArray with no imaginary components.
mxCOMPLEX

Identifies an mxArray with imaginary components.

Description

Various MX Matrix Library functions require an mxComplexity argument. You can set
an mxComplex argument to either mxREAL or mxCOMPLEX.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxcalcsinglesubscript.c

See Also

mxCreateNumericArray, mxCreateDoubleMatrix, mxCreateSparse



 mxCopyCharacterToPtr (Fortran)

1-131

mxCopyCharacterToPtr (Fortran)
CHARACTER values from Fortran array to pointer array

Fortran Syntax
subroutine mxCopyCharacterToPtr(y, px, n)

character*(*) y

mwPointer px

mwSize n

Arguments

y

character Fortran array
px

Pointer to character or name array
n

Number of elements to copy

Description

mxCopyCharacterToPtr copies n character values from the Fortran character
array y into the MATLAB string array pointed to by px. This subroutine is essential
for copying character data between MATLAB pointer arrays and ordinary Fortran
character arrays.

See Also

mxCopyPtrToCharacter, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings



1  API Reference

1-132

mxCopyComplex16ToPtr (Fortran)
COMPLEX*16 values from Fortran array to pointer array

Fortran Syntax
subroutine mxCopyComplex16ToPtr(y, pr, pi, n)

complex*16 y(n)

mwPointer pr, pi

mwSize n

Arguments
y

COMPLEX*16 Fortran array
pr

Pointer to the real data of a double-precision MATLAB array
pi

Pointer to the imaginary data of a double-precision MATLAB array
n

Number of elements to copy

Description

mxCopyComplex16ToPtr copies n COMPLEX*16 values from the Fortran COMPLEX*16
array y into the MATLAB arrays pointed to by pr and pi.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

Examples

See the following examples in matlabroot/extern/examples/refbook.



 mxCopyComplex16ToPtr (Fortran)

1-133

• convec.F

See Also

mxCopyPtrToComplex16, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData



1  API Reference

1-134

mxCopyComplex8ToPtr (Fortran)
COMPLEX*8 values from Fortran array to pointer array

Fortran Syntax
subroutine mxCopyComplex8ToPtr(y, pr, pi, n)

complex*8 y(n)

mwPointer pr, pi

mwSize n

Arguments
y

COMPLEX*8 Fortran array
pr

Pointer to the real data of a single-precision MATLAB array
pi

Pointer to the imaginary data of a single-precision MATLAB array
n

Number of elements to copy

Description
mxCopyComplex8ToPtr copies n COMPLEX*8 values from the Fortran COMPLEX*8 array
y into the MATLAB arrays pointed to by pr and pi.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

See Also
mxCopyPtrToComplex8, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData



 mxCopyInteger1ToPtr (Fortran)

1-135

mxCopyInteger1ToPtr (Fortran)
INTEGER*1 values from Fortran array to pointer array

Fortran Syntax
subroutine mxCopyInteger1ToPtr(y, px, n)

integer*1 y(n)

mwPointer px

mwSize n

Arguments

y

INTEGER*1 Fortran array
px

Pointer to the real or imaginary data of the array
n

Number of elements to copy

Description

mxCopyInteger1ToPtr copies n INTEGER*1 values from the Fortran INTEGER*1 array
y into the MATLAB array pointed to by px, either a real or an imaginary array.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• matsqint8.F



1  API Reference

1-136

See Also

mxCopyPtrToInteger1, mxCreateNumericArray, mxCreateNumericMatrix



 mxCopyInteger2ToPtr (Fortran)

1-137

mxCopyInteger2ToPtr (Fortran)
INTEGER*2 values from Fortran array to pointer array

Fortran Syntax
subroutine mxCopyInteger2ToPtr(y, px, n)

integer*2 y(n)

mwPointer px

mwSize n

Arguments

y

INTEGER*2 Fortran array
px

Pointer to the real or imaginary data of the array
n

Number of elements to copy

Description

mxCopyInteger2ToPtr copies n INTEGER*2 values from the Fortran INTEGER*2 array
y into the MATLAB array pointed to by px, either a real or an imaginary array.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

See Also

mxCopyPtrToInteger2, mxCreateNumericArray, mxCreateNumericMatrix



1  API Reference

1-138

mxCopyInteger4ToPtr (Fortran)
INTEGER*4 values from Fortran array to pointer array

Fortran Syntax
subroutine mxCopyInteger4ToPtr(y, px, n)

integer*4 y(n)

mwPointer px

mwSize n

Arguments

y

INTEGER*4 Fortran array
px

Pointer to the real or imaginary data of the array
n

Number of elements to copy

Description

mxCopyInteger4ToPtr copies n INTEGER*4 values from the Fortran INTEGER*4 array
y into the MATLAB array pointed to by px, either a real or an imaginary array.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

See Also

mxCopyPtrToInteger4, mxCreateNumericArray, mxCreateNumericMatrix



 mxCopyPtrToCharacter (Fortran)

1-139

mxCopyPtrToCharacter (Fortran)

CHARACTER values from pointer array to Fortran array

Fortran Syntax

subroutine mxCopyPtrToCharacter(px, y, n)

mwPointer px

character*(*) y

mwSize n

Arguments

px

Pointer to character or name array
y

character Fortran array
n

Number of elements to copy

Description

mxCopyPtrToCharacter copies n character values from the MATLAB array pointed
to by px into the Fortran character array y. This subroutine is essential for copying
character data from MATLAB pointer arrays into ordinary Fortran character arrays.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matdemo2.F



1  API Reference

1-140

See Also

mxCopyCharacterToPtr, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings



 mxCopyPtrToComplex16 (Fortran)

1-141

mxCopyPtrToComplex16 (Fortran)
COMPLEX*16 values from pointer array to Fortran array

Fortran Syntax
subroutine mxCopyPtrToComplex16(pr, pi, y, n)

mwPointer pr, pi

complex*16 y(n)

mwSize n

Arguments
pr

Pointer to the real data of a double-precision MATLAB array
pi

Pointer to the imaginary data of a double-precision MATLAB array
y

COMPLEX*16 Fortran array
n

Number of elements to copy

Description

mxCopyPtrToComplex16 copies n COMPLEX*16 values from the MATLAB arrays
pointed to by pr and pi into the Fortran COMPLEX*16 array y.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

Examples

See the following examples in matlabroot/extern/examples/refbook.



1  API Reference

1-142

• convec.F

See Also

mxCopyComplex16ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData



 mxCopyPtrToComplex8 (Fortran)

1-143

mxCopyPtrToComplex8 (Fortran)
COMPLEX*8 values from pointer array to Fortran array

Fortran Syntax
subroutine mxCopyPtrToComplex8(pr, pi, y, n)

mwPointer pr, pi

complex*8 y(n)

mwSize n

Arguments
pr

Pointer to the real data of a single-precision MATLAB array
pi

Pointer to the imaginary data of a single-precision MATLAB array
y

COMPLEX*8 Fortran array
n

Number of elements to copy

Description
mxCopyPtrToComplex8 copies n COMPLEX*8 values from the MATLAB arrays pointed
to by pr and pi into the Fortran COMPLEX*8 array y.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

See Also
mxCopyComplex8ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData



1  API Reference

1-144

mxCopyPtrToInteger1 (Fortran)
INTEGER*1 values from pointer array to Fortran array

Fortran Syntax
subroutine mxCopyPtrToInteger1(px, y, n)

mwPointer px

integer*1 y(n)

mwSize n

Arguments

px

Pointer to the real or imaginary data of the array
y

INTEGER*1 Fortran array
n

Number of elements to copy

Description

mxCopyPtrToInteger1 copies n INTEGER*1 values from the MATLAB array pointed to
by px, either a real or imaginary array, into the Fortran INTEGER*1 array y.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• matsqint8.F



 mxCopyPtrToInteger1 (Fortran)

1-145

See Also

mxCopyInteger1ToPtr, mxCreateNumericArray, mxCreateNumericMatrix



1  API Reference

1-146

mxCopyPtrToInteger2 (Fortran)
INTEGER*2 values from pointer array to Fortran array

Fortran Syntax
subroutine mxCopyPtrToInteger2(px, y, n)

mwPointer px

integer*2 y(n)

mwSize n

Arguments

px

Pointer to the real or imaginary data of the array
y

INTEGER*2 Fortran array
n

Number of elements to copy

Description

mxCopyPtrToInteger2 copies n INTEGER*2 values from the MATLAB array pointed to
by px, either a real or an imaginary array, into the Fortran INTEGER*2 array y.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

See Also

mxCopyInteger2ToPtr, mxCreateNumericArray, mxCreateNumericMatrix



 mxCopyPtrToInteger4 (Fortran)

1-147

mxCopyPtrToInteger4 (Fortran)
INTEGER*4 values from pointer array to Fortran array

Fortran Syntax
subroutine mxCopyPtrToInteger4(px, y, n)

mwPointer px

integer*4 y(n)

mwSize n

Arguments

px

Pointer to the real or imaginary data of the array
y

INTEGER*4 Fortran array
n

Number of elements to copy

Description

mxCopyPtrToInteger4 copies n INTEGER*4 values from the MATLAB array pointed to
by px, either a real or an imaginary array, into the Fortran INTEGER*4 array y.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

See Also

mxCopyInteger4ToPtr, mxCreateNumericArray, mxCreateNumericMatrix



1  API Reference

1-148

mxCopyPtrToPtrArray (Fortran)
Pointer values from pointer array to Fortran array

Fortran Syntax
subroutine mxCopyPtrToPtrArray(px, y, n)

mwPointer px

mwPointer y(n)

mwSize n

Arguments

px

Pointer to pointer array
y

Fortran array of mwPointer values
n

Number of pointers to copy

Description

mxCopyPtrToPtrArray copies n pointers from the MATLAB array pointed to by px into
the Fortran array y. This subroutine is essential for copying the output of matGetDir
into an array of pointers. After calling this function, each element of y contains a pointer
to a string. You can convert these strings to Fortran character arrays by passing each
element of y as the first argument to mxCopyPtrToCharacter.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matdemo2.F



 mxCopyPtrToPtrArray (Fortran)

1-149

See Also

matGetDir, mxCopyPtrToCharacter



1  API Reference

1-150

mxCopyPtrToReal4 (Fortran)
REAL*4 values from pointer array to Fortran array

Fortran Syntax
subroutine mxCopyPtrToReal4(px, y, n)

mwPointer px

real*4 y(n)

mwSize n

Arguments

px

Pointer to the real or imaginary data of a single-precision MATLAB array
y

REAL*4 Fortran array
n

Number of elements to copy

Description

mxCopyPtrToReal4 copies n REAL*4 values from the MATLAB array pointed to by px,
either a pr or pi array, into the Fortran REAL*4 array y.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

See Also

mxCopyReal4ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData



 mxCopyPtrToReal8 (Fortran)

1-151

mxCopyPtrToReal8 (Fortran)
REAL*8 values from pointer array to Fortran array

Fortran Syntax
subroutine mxCopyPtrToReal8(px, y, n)

mwPointer px

real*8 y(n)

mwSize n

Arguments

px

Pointer to the real or imaginary data of a double-precision MATLAB array
y

REAL*8 Fortran array
n

Number of elements to copy

Description

mxCopyPtrToReal8 copies n REAL*8 values from the MATLAB array pointed to by px,
either a pr or pi array, into the Fortran REAL*8 array y.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• fengdemo.F



1  API Reference

1-152

See the following examples in matlabroot/extern/examples/refbook.

• timestwo.F
• xtimesy.F

See Also

mxCopyReal8ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData



 mxCopyReal4ToPtr (Fortran)

1-153

mxCopyReal4ToPtr (Fortran)
REAL*4 values from Fortran array to pointer array

Fortran Syntax
subroutine mxCopyReal4ToPtr(y, px, n)

real*4 y(n)

mwPointer px

mwSize n

Arguments

y

REAL*4 Fortran array
px

Pointer to the real or imaginary data of a single-precision MATLAB array
n

Number of elements to copy

Description

mxCopyReal4ToPtr copies n REAL*4 values from the Fortran REAL*4 array y into the
MATLAB array pointed to by px, either a pr or pi array.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

See Also

mxCopyPtrToReal4, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData



1  API Reference

1-154

mxCopyReal8ToPtr (Fortran)
REAL*8 values from Fortran array to pointer array

Fortran Syntax
subroutine mxCopyReal8ToPtr(y, px, n)

real*8 y(n)

mwPointer px

mwSize n

Arguments

y

REAL*8 Fortran array
px

Pointer to the real or imaginary data of a double-precision MATLAB array
n

Number of elements to copy

Description

mxCopyReal8ToPtr copies n REAL*8 values from the Fortran REAL*8 array y into the
MATLAB array pointed to by px, either a pr or pi array.

Sets up standard Fortran arrays for passing as arguments to or from the computation
routine of a MEX-file. Use this subroutine with Fortran compilers that do not support the
%VAL construct.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matdemo1.F



 mxCopyReal8ToPtr (Fortran)

1-155

• fengdemo.F

See the following examples in matlabroot/extern/examples/refbook.

• timestwo.F
• xtimesy.F

See Also

mxCopyPtrToReal8, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData



1  API Reference

1-156

mxCreateCellArray (C and Fortran)

N-D cell array

C Syntax

#include "matrix.h"

mxArray *mxCreateCellArray(mwSize ndim, const mwSize *dims);

Fortran Syntax

mwPointer mxCreateCellArray(ndim, dims)

mwSize ndim

mwSize dims(ndim)

Arguments

ndim

Number of dimensions in the created cell. For example, to create a three-dimensional
cell mxArray, set ndim to 3.

dims

Dimensions array. Each element in the dimensions array contains the size of the
mxArray in that dimension. For example, in C, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. In Fortran, setting dims(1) to 5 and dims(2) to
7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements in the
dims array.

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.



 mxCreateCellArray (C and Fortran)

1-157

Description

Use mxCreateCellArray to create a cell mxArray with size defined by ndim and dims.
For example, in C, to establish a three-dimensional cell mxArray having dimensions 4-
by-8-by-7, set:

ndim = 3;

dims[0] = 4; dims[1] = 8; dims[2] = 7;

In Fortran, to establish a three-dimensional cell mxArray having dimensions 4-by-8-
by-7, set:

ndim = 3;

dims(1) = 4; dims(2) = 8; dims(3) = 7;

The created cell mxArray is unpopulated; mxCreateCellArray initializes each cell to
NULL. To put data into a cell, call mxSetCell.

MATLAB automatically removes any trailing singleton dimensions specified in the dims
argument. For example, if ndim equals 5 and dims equals [4 1 7 1 1], the resulting
array has the dimensions 4-by-1-by-7.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c

See Also

mxCreateCellMatrix, mxGetCell, mxSetCell, mxIsCell



1  API Reference

1-158

mxCreateCellMatrix (C and Fortran)
2-D cell array

C Syntax
#include "matrix.h"

mxArray *mxCreateCellMatrix(mwSize m, mwSize n);

Fortran Syntax
mwPointer mxCreateCellMatrix(m, n)

mwSize m, n

Arguments

m

Number of rows
n

Number of columns

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

Use mxCreateCellMatrix to create an m-by-n two-dimensional cell mxArray. The
created cell mxArray is unpopulated; mxCreateCellMatrix initializes each cell to NULL
in C (0 in Fortran). To put data into cells, call mxSetCell.



 mxCreateCellMatrix (C and Fortran)

1-159

mxCreateCellMatrix is identical to mxCreateCellArray except that
mxCreateCellMatrix can create two-dimensional mxArrays only, but
mxCreateCellArray can create mxArrays having any number of dimensions greater
than 1.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxcreatecellmatrix.c
• mxcreatecellmatrixf.F

See Also

mxCreateCellArray



1  API Reference

1-160

mxCreateCharArray (C and Fortran)

N-D string array

C Syntax

#include "matrix.h"

mxArray *mxCreateCharArray(mwSize ndim, const mwSize *dims);

Fortran Syntax

mwPointer mxCreateCharArray(ndim, dims)

mwSize ndim

mwSize dims(ndim)

Arguments

ndim

Number of dimensions in the string mxArray, specified as a positive number. If you
specify 0, 1, or 2, mxCreateCharArray creates a two-dimensional mxArray.

dims

Dimensions array. Each element in the dimensions array contains the size of the
array in that dimension. For example, in C, setting dims[0] to 5 and dims[1] to
7 establishes a 5-by-7 mxArray. In Fortran, setting dims(1) to 5 and dims(2) to
7 establishes a 5-by-7 character mxArray. The dims array must have at least ndim
elements.

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.



 mxCreateCharArray (C and Fortran)

1-161

Description

Call mxCreateCharArray to create an N-dimensional string mxArray. The created
mxArray is unpopulated; that is, mxCreateCharArray initializes each cell to NULL in C
(0 in Fortran).

MATLAB automatically removes any trailing singleton dimensions specified in the dims
argument. For example, if ndim equals 5 and dims equals [4 1 7 1 1], the resulting
array has the dimensions 4-by-1-by-7.

See Also

mxCreateCharMatrixFromStrings, mxCreateString



1  API Reference

1-162

mxCreateCharMatrixFromStrings (C and Fortran)

2-D string array initialized to specified value

C Syntax

#include "matrix.h"

mxArray *mxCreateCharMatrixFromStrings(mwSize m, const char **str);

Fortran Syntax

mwPointer mxCreateCharMatrixFromStrings(m, str)

mwSize m

character*(*) str(m)

Arguments

m

Number of rows in the created string mxArray. The value you specify for m is the
number of strings in str.

str

In C, an array of strings containing at least m strings. In Fortran, a character*n
array of size m, where each element of the array is n bytes.

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray. Another
possible reason for failure is that str contains fewer than m strings.



 mxCreateCharMatrixFromStrings (C and Fortran)

1-163

Description

Use mxCreateCharMatrixFromStrings to create a two-dimensional string mxArray,
where each row is initialized to a string from str. In C, the created mxArray has
dimensions m-by-max, where max is the length of the longest string in str. In Fortran,
the created mxArray has dimensions m-by-n, where n is the number of characters in
str(i).

String mxArrays represent their data elements as mxChar rather than as C char.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxcreatecharmatrixfromstr.c

See Also

mxCreateCharArray, mxCreateString, mxGetString



1  API Reference

1-164

mxCreateDoubleMatrix (C and Fortran)
2-D, double-precision, floating-point array

C Syntax
#include "matrix.h"

mxArray *mxCreateDoubleMatrix(mwSize m, mwSize n,

  mxComplexity ComplexFlag);

Fortran Syntax
mwPointer mxCreateDoubleMatrix(m, n, ComplexFlag)

mwSize m, n

integer*4 ComplexFlag

Arguments

m

Number of rows
n

Number of columns
ComplexFlag

If the mxArray you are creating is to contain imaginary data, set ComplexFlag to
mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in
Fortran).

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.



 mxCreateDoubleMatrix (C and Fortran)

1-165

Description

Use mxCreateDoubleMatrix to create an m-by-n mxArray. mxCreateDoubleMatrix
initializes each element in the pr array to 0. If you set ComplexFlag to mxCOMPLEX in C
(1 in Fortran), mxCreateDoubleMatrix also initializes each element in the pi array to
0.

If you set ComplexFlag to mxREAL in C (0 in Fortran), mxCreateDoubleMatrix
allocates enough memory to hold m-by-n real elements. If you set ComplexFlag to
mxCOMPLEX in C (1 in Fortran), mxCreateDoubleMatrix allocates enough memory to
hold m-by-n real elements and m-by-n imaginary elements.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its associated real and complex elements.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• convec.c
• findnz.c
• matrixDivide.c
• sincall.c
• timestwo.c
• timestwoalt.c
• xtimesy.c

For Fortran examples, see:

• convec.F
• dblmat.F
• matsq.F
• timestwo.F
• xtimesy.F



1  API Reference

1-166

See Also

mxCreateNumericArray



 mxCreateDoubleScalar (C and Fortran)

1-167

mxCreateDoubleScalar (C and Fortran)

Scalar, double-precision array initialized to specified value

C Syntax

#include "matrix.h"

mxArray *mxCreateDoubleScalar(double value);

Fortran Syntax

mwPointer mxCreateDoubleScalar(value)

real*8 value

Arguments

value

Value to which you want to initialize the array

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

Call mxCreateDoubleScalar to create a scalar double mxArray. When you finish using
the mxArray, call mxDestroyArray to destroy it.



1  API Reference

1-168

Alternatives

C Language

In C, you can replace the statements:

pa = mxCreateDoubleMatrix(1, 1, mxREAL);

*mxGetPr(pa) = value;

with a call to mxCreateDoubleScalar:

pa = mxCreateDoubleScalar(value);

Fortran Language

In Fortran, you can replace the statements:

pm = mxCreateDoubleMatrix(1, 1, 0)

mxCopyReal8ToPtr(value, mxGetPr(pm), 1)

with a call to mxCreateDoubleScalar:

pm = mxCreateDoubleScalar(value)

See Also

mxGetPr, mxCreateDoubleMatrix



 mxCreateLogicalArray (C)

1-169

mxCreateLogicalArray (C)

N-D logical array

C Syntax

#include "matrix.h"

mxArray *mxCreateLogicalArray(mwSize ndim, const mwSize *dims);

Arguments

ndim

Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateLogicalArray automatically sets the number of dimensions to 2.

dims

Dimensions array. Each element in the dimensions array contains the size of the
array in that dimension. For example, setting dims[0] to 5 and dims[1] to 7
establishes a 5-by-7 mxArray. There are ndim elements in the dims array.

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

Call mxCreateLogicalArray to create an N-dimensional mxArray of mxLogical
elements. After creating the mxArray, mxCreateLogicalArray initializes all its
elements to logical 0. mxCreateLogicalArray differs from mxCreateLogicalMatrix
in that the latter can create two-dimensional arrays only.



1  API Reference

1-170

mxCreateLogicalArray allocates dynamic memory to store the created mxArray.
When you finish with the created mxArray, call mxDestroyArray to deallocate its
memory.

MATLAB automatically removes any trailing singleton dimensions specified in the dims
argument. For example, if ndim equals 5 and dims equals [4 1 7 1 1], the resulting
array has the dimensions 4-by-1-by-7.

See Also

mxCreateLogicalMatrix, mxCreateSparseLogicalMatrix,
mxCreateLogicalScalar



 mxCreateLogicalMatrix (C)

1-171

mxCreateLogicalMatrix (C)
2-D logical array

C Syntax
#include "matrix.h"

mxArray *mxCreateLogicalMatrix(mwSize m, mwSize n);

Arguments
m

Number of rows
n

Number of columns

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

Use mxCreateLogicalMatrix to create an m-by-n mxArray of mxLogical elements.
mxCreateLogicalMatrix initializes each element in the array to logical 0.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray.

Examples

See the following examples in matlabroot/extern/examples/mx.



1  API Reference

1-172

• mxislogical.c

See Also

mxCreateLogicalArray, mxCreateSparseLogicalMatrix,
mxCreateLogicalScalar



 mxCreateLogicalScalar (C)

1-173

mxCreateLogicalScalar (C)
Scalar, logical array

C Syntax
#include "matrix.h"

mxArray *mxCreateLogicalScalar(mxLogical value);

Arguments
value

Logical value to which you want to initialize the array

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

Call mxCreateLogicalScalar to create a scalar logical mxArray.
mxCreateLogicalScalar is a convenience function that replaces the following code:

pa = mxCreateLogicalMatrix(1, 1);

*mxGetLogicals(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also

mxCreateLogicalArray, mxCreateLogicalMatrix, mxIsLogicalScalar,
mxIsLogicalScalarTrue, mxGetLogicals, mxDestroyArray



1  API Reference

1-174

mxCreateNumericArray (C and Fortran)
N-D numeric array

C Syntax
#include "matrix.h"

mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims, 

         mxClassID classid, mxComplexity ComplexFlag);

Fortran Syntax
mwPointer mxCreateNumericArray(ndim, dims, classid, 

  ComplexFlag)

mwSize ndim

mwSize dims(ndim)

integer*4 classid, ComplexFlag

Arguments

ndim

Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateNumericArray automatically sets the number of dimensions to 2.

dims

Dimensions array. Each element in the dimensions array contains the size of the
array in that dimension. For example, in C, setting dims[0] to 5 and dims[1] to 7
establishes a 5-by-7 mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 mxArray. In most cases, there are ndim elements in the dims
array.

classid

Identifier for the class of the array, which determines the way the numerical data is
represented in memory. For example, specifying mxINT16_CLASS in C causes each
piece of numerical data in the mxArray to be represented as a 16-bit signed integer.
In Fortran, use the function mxClassIDFromClassName to derive the classid
value from a MATLAB class name. See the Description section for more information.



 mxCreateNumericArray (C and Fortran)

1-175

ComplexFlag

If the mxArray you are creating is to contain imaginary data, set ComplexFlag to
mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in
Fortran).

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

Call mxCreateNumericArray to create an N-dimensional mxArray in which all
data elements have the numeric data type specified by classid. After creating the
mxArray, mxCreateNumericArray initializes all its real data elements to 0. If
ComplexFlag equals mxCOMPLEX in C (1 in Fortran), mxCreateNumericArray also
initializes all its imaginary data elements to 0. mxCreateNumericArray differs from
mxCreateDoubleMatrix as follows:

• All data elements in mxCreateDoubleMatrix are double-precision, floating-point
numbers. The data elements in mxCreateNumericArray can be any numerical type,
including different integer precisions.

• mxCreateDoubleMatrix can create two-dimensional arrays only;
mxCreateNumericArray can create arrays of two or more dimensions.

mxCreateNumericArray allocates dynamic memory to store the created mxArray.
When you finish with the created mxArray, call mxDestroyArray to deallocate its
memory.

MATLAB automatically removes any trailing singleton dimensions specified in the dims
argument. For example, if ndim equals 5 and dims equals [4 1 7 1 1], the resulting
array has the dimensions 4-by-1-by-7.

The following table shows the C classid values and the Fortran data types that are
equivalent to MATLAB classes.



1  API Reference

1-176

MATLAB Class Name C classid Value Fortran Type

int8 mxINT8_CLASS BYTE

uint8 mxUINT8_CLASS  
int16 mxINT16_CLASS INTEGER*2

uint16 mxUINT16_CLASS  
int32 mxINT32_CLASS INTEGER*4

uint32 mxUINT32_CLASS  
int64 mxINT64_CLASS INTEGER*8

uint64 mxUINT64_CLASS  
single mxSINGLE_CLASS REAL*4

COMPLEX*8

double mxDOUBLE_CLASS REAL*8

COMPLEX*16

Examples

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c
• doubleelement.c
• matrixDivide.c
• matsqint8.F

See the following examples in matlabroot/extern/examples/mx.

• mxisfinite.c

See Also

mxClassId, mxClassIdFromClassName, mxComplexity, mxDestroyArray,
mxCreateUninitNumericArray, mxCreateNumericMatrix



 mxCreateNumericMatrix (C and Fortran)

1-177

mxCreateNumericMatrix (C and Fortran)

2-D numeric matrix

C Syntax

#include "matrix.h"

mxArray *mxCreateNumericMatrix(mwSize m, mwSize n, 

  mxClassID classid, mxComplexity ComplexFlag);

Fortran Syntax

mwPointer mxCreateNumericMatrix(m, n, classid, 

  ComplexFlag)

mwSize m, n

integer*4 classid, ComplexFlag

Arguments

m

Number of rows
n

Number of columns
classid

Identifier for the class of the array, which determines the way the numerical data is
represented in memory. For example, specifying mxINT16_CLASS in C causes each
piece of numerical data in the mxArray to be represented as a 16-bit signed integer.
In Fortran, use the function mxClassIDFromClassName to derive the classid
value from a MATLAB class name.

ComplexFlag

If the mxArray you are creating is to contain imaginary data, set ComplexFlag to
mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in
Fortran).



1  API Reference

1-178

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

Call mxCreateNumericMatrix to create a 2-D mxArray in which all data elements
have the numeric data type specified by classid. After creating the mxArray,
mxCreateNumericMatrix initializes all its real data elements to 0. If ComplexFlag
equals mxCOMPLEX in C (1 in Fortran), mxCreateNumericMatrix also initializes all its
imaginary data elements to 0. mxCreateNumericMatrix allocates dynamic memory to
store the created mxArray. When you finish using the mxArray, call mxDestroyArray
to destroy it.

The following table shows the C classid values and the Fortran data types that are
equivalent to MATLAB classes.

MATLAB Class Name C classid Value Fortran Type

int8 mxINT8_CLASS BYTE

uint8 mxUINT8_CLASS  
int16 mxINT16_CLASS INTEGER*2

uint16 mxUINT16_CLASS  
int32 mxINT32_CLASS INTEGER*4

uint32 mxUINT32_CLASS  
int64 mxINT64_CLASS INTEGER*8

uint64 mxUINT64_CLASS  
single mxSINGLE_CLASS REAL*4

COMPLEX*8

double mxDOUBLE_CLASS REAL*8

COMPLEX*16



 mxCreateNumericMatrix (C and Fortran)

1-179

Examples

See the following examples in matlabroot/extern/examples/refbook.

• arrayFillGetPr.c

The following Fortran statements create a 4-by-3 matrix of REAL*4 elements having no
imaginary components:

C      Create 4x3 mxArray of REAL*4

       mxCreateNumericMatrix(4, 3,

     +                mxClassIDFromClassName('single'), 0)

See Also

mxClassId, mxClassIdFromClassName, mxComplexity, mxDestroyArray,
mxCreateUninitNumericMatrix, mxCreateNumericArray



1  API Reference

1-180

mxCreateSparse (C and Fortran)

2-D sparse array

C Syntax

#include "matrix.h"

mxArray *mxCreateSparse(mwSize m, mwSize n, mwSize nzmax, 

         mxComplexity ComplexFlag);

Fortran Syntax

mwPointer mxCreateSparse(m, n, nzmax, ComplexFlag)

mwSize m, n, nzmax

integer*4 ComplexFlag

Arguments

m

Number of rows
n

Number of columns
nzmax

Number of elements that mxCreateSparse should allocate to hold the pr, ir, and, if
ComplexFlag is mxCOMPLEX in C (1 in Fortran), pi arrays. Set the value of nzmax to
be greater than or equal to the number of nonzero elements you plan to put into the
mxArray, but make sure that nzmax is less than or equal to m*n.

ComplexFlag

If the mxArray you are creating is to contain imaginary data, set ComplexFlag to
mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in
Fortran).



 mxCreateSparse (C and Fortran)

1-181

Returns
Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray. In that
case, try reducing nzmax, m, or n.

Description
Call mxCreateSparse to create an unpopulated sparse double mxArray. The returned
sparse mxArray contains no sparse information and cannot be passed as an argument to
any MATLAB sparse functions. To make the returned sparse mxArray useful, you must
initialize the pr, ir, jc, and (if it exists) pi arrays.

mxCreateSparse allocates space for:

• A pr array of length nzmax.
• A pi array of length nzmax, but only if ComplexFlag is mxCOMPLEX in C (1 in

Fortran).
• An ir array of length nzmax.
• A jc array of length n+1.

When you finish using the sparse mxArray, call mxDestroyArray to reclaim all its heap
space.

Examples
See the following examples in matlabroot/extern/examples/refbook.

• fulltosparse.c
• fulltosparse.F

See Also
mxDestroyArray, mxSetNzmax, mxSetPr, mxSetPi, mxSetIr, mxSetJc,
mxComplexity



1  API Reference

1-182

mxCreateSparseLogicalMatrix (C)
2-D, sparse, logical array

C Syntax
#include "matrix.h"

mxArray *mxCreateSparseLogicalMatrix(mwSize m, mwSize n, 

  mwSize nzmax);

Arguments
m

Number of rows
n

Number of columns
nzmax

Number of elements that mxCreateSparseLogicalMatrix should allocate to hold
the data. Set the value of nzmax to be greater than or equal to the number of nonzero
elements you plan to put into the mxArray, but make sure that nzmax is less than or
equal to m*n.

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

Use mxCreateSparseLogicalMatrix to create an m-by-n mxArray of mxLogical
elements. mxCreateSparseLogicalMatrix initializes each element in the array to
logical 0.



 mxCreateSparseLogicalMatrix (C)

1-183

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its elements.

See Also

mxCreateLogicalArray, mxCreateLogicalMatrix, mxCreateLogicalScalar,
mxCreateSparse, mxIsLogical



1  API Reference

1-184

mxCreateString (C and Fortran)
1-N array initialized to specified string

C Syntax
#include "matrix.h"

mxArray *mxCreateString(const char *str);

Fortran Syntax
mwPointer mxCreateString(str)

character*(*) str

Arguments

str

String that is to serve as the mxArray's initial data

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

Use mxCreateString to create a string mxArray initialized to str. Many MATLAB
functions (for example, strcmp and upper) require string array inputs.

Free the string mxArray when you are finished using it. To free a string mxArray, call
mxDestroyArray.



 mxCreateString (C and Fortran)

1-185

Examples

See the following examples in matlabroot/extern/examples/refbook.

• revord.c
• revord.F

See the following examples in matlabroot/extern/examples/mx.

• mxcreatestructarray.c
• mxisclass.c

See the following examples in matlabroot/extern/examples/eng_mat.

• matdemo1.F

See Also

mxCreateCharMatrixFromStrings, mxCreateCharArray



1  API Reference

1-186

mxCreateStructArray (C and Fortran)

N-D structure array

C Syntax

#include "matrix.h"

mxArray *mxCreateStructArray(mwSize ndim, const mwSize *dims,

  int nfields, const char **fieldnames);

Fortran Syntax

mwPointer mxCreateStructArray(ndim, dims, nfields,

  fieldnames)

mwSize ndim

mwSize dims(ndim)

integer*4 nfields

character*(*) fieldnames(nfields)

Arguments

ndim

Number of dimensions. If you set ndim to be less than 2, mxCreateStructArray
creates a two-dimensional mxArray.

dims

Dimensions array. Each element in the dimensions array contains the size of the
array in that dimension. For example, in C, setting dims[0] to 5 and dims[1] to 7
establishes a 5-by-7 mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 mxArray. Typically, the dims array should have ndim elements.

nfields

Number of fields in each element
fieldnames

List of field names



 mxCreateStructArray (C and Fortran)

1-187

Each structure field name must begin with a letter and is case-sensitive. The rest of the
name can contain letters, numerals, and underscore characters. Use the namelengthmax
function to determine the maximum length of a field name.

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

Call mxCreateStructArray to create an unpopulated structure mxArray. Each element
of a structure mxArray contains the same number of fields (specified in nfields). Each
field has a name; the list of names is specified in fieldnames. A MATLAB structure
mxArray is conceptually identical to an array of structs in the C language.

Each field holds one mxArray pointer. mxCreateStructArray initializes each field
to NULL in C (0 in Fortran). Call mxSetField or mxSetFieldByNumber to place a
non-NULL mxArray pointer in a field.

When you finish using the returned structure mxArray, call mxDestroyArray to reclaim
its space.

Any trailing singleton dimensions specified in the dims argument are automatically
removed from the resulting array. For example, if ndim equals 5 and dims equals [4 1
7 1 1], the resulting array is given the dimensions 4-by-1-by-7.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxcreatestructarray.c



1  API Reference

1-188

See Also

mxDestroyArray, mxAddField, mxRemoveField, mxSetField, mxSetFieldByNumber



 mxCreateStructMatrix (C and Fortran)

1-189

mxCreateStructMatrix (C and Fortran)

2-D structure array

C Syntax

#include "matrix.h"

mxArray *mxCreateStructMatrix(mwSize m, mwSize n, int nfields, 

         const char **fieldnames);

Fortran Syntax

mwPointer mxCreateStructMatrix(m, n, nfields, fieldnames)

mwSize m, n

integer*4 nfields

character*(*) fieldnames(nfields)

Arguments

m

Number of rows. This must be a positive integer.
n

Number of columns. This must be a positive integer.
nfields

Number of fields in each element.
fieldnames

List of field names.

Each structure field name must begin with a letter and is case-sensitive. The rest of the
name can contain letters, numerals, and underscore characters. Use the namelengthmax
function to determine the maximum length of a field name.



1  API Reference

1-190

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

mxCreateStructMatrix and mxCreateStructArray are almost identical. The only
difference is that mxCreateStructMatrix can create only two-dimensional mxArrays,
while mxCreateStructArray can create mxArrays having two or more dimensions.

C Examples

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c

See Also

mxCreateStructArray



 mxCreateUninitNumericArray (C)

1-191

mxCreateUninitNumericArray (C)
Uninitialized N-D numeric array

C Syntax
#include "matrix.h"

mxArray *mxCreateUninitNumericArray(size_t ndim, size_t *dims, 

  mxClassID classid, mxComplexity ComplexFlag);

Arguments

ndim

Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateUninitNumericArray automatically sets the number of dimensions to 2.

dims

Dimensions array. Each element in the dimensions array contains the size of the
array in that dimension. For example, setting dims[0] to 5 and dims[1] to 7
establishes a 5-by-7 mxArray. In most cases, there are ndim elements in the dims
array.

classid

Identifier for the class of the array, which determines the way the numerical data is
represented in memory. For example, specifying mxINT16_CLASS causes each piece
of numerical data in the mxArray to be represented as a 16-bit signed integer.

ComplexFlag

If the mxArray you are creating is to contain imaginary data, set ComplexFlag to
mxCOMPLEX. Otherwise, set ComplexFlag to mxREAL.

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-MEX-
file) application, returns NULL. If unsuccessful in a MEX-file, the MEX-file terminates
and returns control to the MATLAB prompt. The function is unsuccessful when there is
not enough free heap space to create the mxArray.



1  API Reference

1-192

Description

Call mxCreateUninitNumericArray to create an N-dimensional mxArray in which all
data elements have the numeric data type specified by classid. Data elements are not
initialized.

mxCreateUninitNumericArray allocates dynamic memory to store the created
mxArray. Call mxDestroyArray to deallocate the memory.

The following table shows the C classid values that are equivalent to MATLAB classes.

MATLAB Class Name C classid Value

int8 mxINT8_CLASS

uint8 mxUINT8_CLASS

int16 mxINT16_CLASS

uint16 mxUINT16_CLASS

int32 mxINT32_CLASS

uint32 mxUINT32_CLASS

int64 mxINT64_CLASS

uint64 mxUINT64_CLASS

single mxSINGLE_CLASS

double mxDOUBLE_CLASS

See Also

mxDestroyArray, mxCreateUninitNumericMatrix, mxCreateNumericArray

Introduced in R2015a



 mxCreateUninitNumericMatrix (C)

1-193

mxCreateUninitNumericMatrix (C)

Uninitialized 2-D numeric matrix

C Syntax

#include "matrix.h"

mxArray *mxCreateUninitNumericMatrix(size_t m, size_t n, 

  mxClassID classid, mxComplexity ComplexFlag);

Arguments

m

Number of rows
n

Number of columns
classid

Identifier for the class of the array, which determines the way the numerical data is
represented in memory. For example, specifying mxINT16_CLASS causes each piece
of numerical data in the mxArray to be represented as a 16-bit signed integer.

ComplexFlag

If the mxArray you are creating is to contain imaginary data, set ComplexFlag to
mxCOMPLEX. Otherwise, set ComplexFlag to mxREAL.

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-MEX-
file) application, returns NULL. If unsuccessful in a MEX-file, the MEX-file terminates
and returns control to the MATLAB prompt. The function is unsuccessful when there is
not enough free heap space to create the mxArray.



1  API Reference

1-194

Description

Call mxCreateUninitNumericMatrix to create a 2-D mxArray in which all data
elements have the numeric data type specified by classid. Data elements are not
initialized.

mxCreateUninitNumericMatrix allocates dynamic memory to store the created
mxArray. Call mxDestroyArray to deallocate the memory.

The following table shows the C classid values that are equivalent to MATLAB classes.

MATLAB Class Name C classid Value

int8 mxINT8_CLASS

uint8 mxUINT8_CLASS

int16 mxINT16_CLASS

uint16 mxUINT16_CLASS

int32 mxINT32_CLASS

uint32 mxUINT32_CLASS

int64 mxINT64_CLASS

uint64 mxUINT64_CLASS

single mxSINGLE_CLASS

double mxDOUBLE_CLASS

See Also

mxDestroyArray, mxCreateUninitNumericArray, mxCreateNumericMatrix

Introduced in R2015a



 mxDestroyArray (C and Fortran)

1-195

mxDestroyArray (C and Fortran)
Free dynamic memory allocated by MXCREATE* functions

C Syntax
#include "matrix.h"

void mxDestroyArray(mxArray *pm);

Fortran Syntax
subroutine mxDestroyArray(pm)

mwPointer pm

Arguments

pm

Pointer to the mxArray to free

Description

mxDestroyArray deallocates the memory occupied by the specified mxArray. This
includes:

• Characteristics fields of the mxArray, such as size, (m and n), and type.
• Associated data arrays, such as pr and pi for complex arrays, and ir and jc for

sparse arrays.
• Fields of structure arrays.
• Cells of cell arrays.

Do not call mxDestroyArray on an mxArray:

• you return in a left-side argument of a MEX-file.
• returned by the mxGetField or mxGetFieldByNumber functions.



1  API Reference

1-196

• returned by the mxGetCell function.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• matrixDivide.c
• matrixDivideComplex.c
• sincall.c
• sincall.F

See the following examples in matlabroot/extern/examples/mex.

• mexcallmatlab.c
• mexgetarray.c

See the following examples in matlabroot/extern/examples/mx.

• mxisclass.c
• mxcreatecellmatrixf.F

See Also

mxCalloc, mxMalloc, mxFree, mexMakeArrayPersistent,
mexMakeMemoryPersistent



 mxDuplicateArray (C and Fortran)

1-197

mxDuplicateArray (C and Fortran)

Make deep copy of array

C Syntax

#include "matrix.h"

mxArray *mxDuplicateArray(const mxArray *in);

Fortran Syntax

mwPointer mxDuplicateArray(in)

mwPointer in

Arguments

in

Pointer to the mxArray you want to copy

Returns

Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-
MEX-file) application, returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file,
the MEX-file terminates and returns control to the MATLAB prompt. The function is
unsuccessful when there is not enough free heap space to create the mxArray.

Description

mxDuplicateArray makes a deep copy of an array, and returns a pointer to the copy. A
deep copy refers to a copy in which all levels of data are copied. For example, a deep copy
of a cell array copies each cell and the contents of each cell (if any), and so on.



1  API Reference

1-198

Examples

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c

See the following examples in matlabroot/extern/examples/mx.

• mxcreatecellmatrix.c
• mxcreatecellmatrixf.F
• mxgetinf.c
• mxsetdimensions.c
• mxsetdimensionsf.F
• mxsetnzmax.c



 mxFree (C and Fortran)

1-199

mxFree (C and Fortran)
Free dynamic memory allocated by mxCalloc, mxMalloc, mxRealloc, mxArrayToString, or
mxArrayToUTF8String functions

C Syntax
#include "matrix.h"

void mxFree(void *ptr);

Fortran Syntax
subroutine mxFree(ptr)

mwPointer ptr

Arguments

ptr

Pointer to the beginning of any memory parcel allocated by mxCalloc, mxMalloc, or
mxRealloc.

Description

mxFree deallocates heap space using the MATLAB memory management facility. This
ensures correct memory management in error and abort (Ctrl+C) conditions.

To deallocate heap space, MATLAB applications in C should always call mxFree rather
than the ANSI C free function.

In MEX-files, but excluding MAT or engine standalone applications, the MATLAB
memory management facility maintains a list of all memory allocated by mxCalloc,
mxMalloc, mxRealloc, mxArrayToString, and mxArrayToUTF8String. The memory
management facility automatically deallocates all of a MEX-file's managed parcels
when the MEX-file completes and control returns to the MATLAB prompt. mxFree also



1  API Reference

1-200

removes the memory parcel from the memory management facility's list of memory
parcels.

When mxFree appears in a MAT or engine standalone MATLAB application, it simply
deallocates the contiguous heap space that begins at address ptr.

In MEX-files, your use of mxFree depends on whether the specified memory parcel
is persistent or nonpersistent. By default, memory parcels created by mxCalloc,
mxMalloc, mxRealloc, mxArrayToString, and mxArrayToUTF8String are
nonpersistent. The memory management facility automatically frees all nonpersistent
memory whenever a MEX-file completes. Thus, even if you do not call mxFree, MATLAB
takes care of freeing the memory for you. Nevertheless, it is good programming practice
to deallocate memory as soon as you are through using it. Doing so generally makes the
entire system run more efficiently.

If an application calls mexMakeMemoryPersistent, the specified memory parcel
becomes persistent. When a MEX-file completes, the memory management facility does
not free persistent memory parcels. Therefore, the only way to free a persistent memory
parcel is to call mxFree. Typically, MEX-files call mexAtExit to register a cleanup
handler. The cleanup handler calls mxFree.

Do not use mxFree for an mxArray created by any other functions in the Matrix Library
API. Use mxDestroyArray instead.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxcalcsinglesubscript.c
• mxcreatecharmatrixfromstr.c
• mxisfinite.c
• mxmalloc.c
• mxsetdimensions.c

See the following examples in matlabroot/extern/examples/refbook.

• arrayFillGetPrDynamicData.c
• phonebook.c



 mxFree (C and Fortran)

1-201

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See Also

mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent, mxCalloc,
mxDestroyArray, mxMalloc, mxRealloc, mxArrayToString, mxArrayToUTF8String



1  API Reference

1-202

mxGetCell (C and Fortran)
Get contents of cell array

C Syntax
#include "matrix.h"

mxArray *mxGetCell(const mxArray *pm, mwIndex index);

Fortran Syntax
mwPointer mxGetCell(pm, index)

mwPointer pm

mwIndex index

Arguments

pm

Pointer to a cell mxArray
index

Number of elements in the cell mxArray between the first element and the desired
one. See mxCalcSingleSubscript for details on calculating an index in a
multidimensional cell array.

Returns

Pointer to the ith cell mxArray if successful. Otherwise, returns NULL in C (0 in
Fortran). Causes of failure include:

• Specifying the index of a cell array element that has not been populated.
• Specifying a pm that does not point to a cell mxArray.
• Specifying an index greater than the number of elements in the cell.
• Insufficient heap space.



 mxGetCell (C and Fortran)

1-203

If the pointer in the cell is NULL, mxGetCell allocates an empty, double mxArray.

Do not call mxDestroyArray on an mxArray returned by the mxGetCell function.

Description

Call mxGetCell to get a pointer to the mxArray held in the indexed element of the cell
mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays. Do not modify the inputs.
Using mxSetCell* or mxSetField* functions to modify the cells or fields of a MATLAB
argument causes unpredictable results.

Examples

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See Also

mxCreateCellArray, mxIsCell, mxSetCell



1  API Reference

1-204

mxGetChars (C)
Pointer to character array data

C Syntax
#include "matrix.h"

mxChar *mxGetChars(const mxArray *array_ptr);

Arguments

array_ptr

Pointer to an mxArray

Returns

Pointer to the first character in the mxArray. Returns NULL if the specified array is not a
character array.

Description

Call mxGetChars to access the first character in the mxArray that array_ptr points to.
Once you have the starting address, you can access any other element in the mxArray.

See Also

mxGetString



 mxGetClassID (C and Fortran)

1-205

mxGetClassID (C and Fortran)

Class of array

C Syntax

#include "matrix.h"

mxClassID mxGetClassID(const mxArray *pm);

Fortran Syntax

integer*4 mxGetClassID(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Numeric identifier of the class (category) of the mxArray that pm points to. For a list of C-
language class identifiers, see the mxClassID reference page.

Description

Use mxGetClassId to determine the class of an mxArray. The class of an mxArray
identifies the kind of data the mxArray is holding. For example, if pm points to a logical
mxArray, then mxGetClassId returns mxLOGICAL_CLASS (in C).

mxGetClassId is like mxGetClassName, except that the former returns the class as an
integer identifier and the latter returns the class as a string.



1  API Reference

1-206

Examples

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c

See Also

mxClassID, mxGetClassName



 mxGetClassName (C and Fortran)

1-207

mxGetClassName (C and Fortran)

Class of array as string

C Syntax

#include "matrix.h"

const char *mxGetClassName(const mxArray *pm);

Fortran Syntax

character*(*) mxGetClassName(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Class (as a string) of the mxArray pointed to by pm.

Description

Call mxGetClassName to determine the class of an mxArray. The class of an mxArray
identifies the kind of data the mxArray is holding. For example, if pm points to a logical
mxArray, mxGetClassName returns logical.

mxGetClassID is like mxGetClassName, except that the former returns the class as an
integer identifier, as listed in the mxClassID reference page, and the latter returns the
class as a string, as listed in the mxIsClass reference page.



1  API Reference

1-208

Examples

See the following examples in matlabroot/extern/examples/mex.

• mexfunction.c

See the following examples in matlabroot/extern/examples/mx.

• mxisclass.c

See Also

mxGetClassID, mxIsClass



 mxGetData (C and Fortran)

1-209

mxGetData (C and Fortran)
Pointer to real numeric data elements in array

C Syntax
#include "matrix.h"

void *mxGetData(const mxArray *pm);

Fortran Syntax
mwPointer mxGetData(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Pointer to the first element of the real data. Returns NULL in C (0 in Fortran) if there is
no real data.

Description

In C, mxGetData returns a void pointer (void *). Since void pointers point to a value
that has no type, cast the return value to the pointer type that matches the type specified
by pm. To see how MATLAB types map to their equivalent C types, see the table on the
mxClassID reference page.

In Fortran, to copy values from the returned pointer, use one of the mxCopyPtrTo*
functions in the following manner:



1  API Reference

1-210

C      Get the data in mxArray, pm

       mxCopyPtrToReal8(mxGetData(pm),data,

     +                  mxGetNumberOfElements(pm))

Examples

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See the following examples in matlabroot/extern/examples/refbook.

• matrixDivide.c
• matrixDivideComplex.c
• phonebook.c

See the following examples in matlabroot/extern/examples/mx.

• mxcreatecharmatrixfromstr.c
• mxisfinite.c

See Also

mxGetImagData, mxGetPr, mxClassID



 mxGetDimensions (C and Fortran)

1-211

mxGetDimensions (C and Fortran)
Pointer to dimensions array

C Syntax
#include "matrix.h"

const mwSize *mxGetDimensions(const mxArray *pm);

Fortran Syntax
mwPointer mxGetDimensions(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray.

Returns

Pointer to the first element in the dimensions array. Each integer in the dimensions
array represents the number of elements in a particular dimension. The array is not
NULL terminated.

Description

Use mxGetDimensions to determine how many elements are in each dimension of the
mxArray that pm points to. Call mxGetNumberOfDimensions to get the number of
dimensions in the mxArray.

To copy the values to Fortran, use mxCopyPtrToInteger4 in the following manner:

C      Get dimensions of mxArray, pm



1  API Reference

1-212

       mxCopyPtrToInteger4(mxGetDimensions(pm), dims,  

     +                      mxGetNumberOfDimensions(pm))

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxcalcsinglesubscript.c
• mxgeteps.c
• mxisfinite.c

See the following examples in matlabroot/extern/examples/refbook.

• findnz.c
• phonebook.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See Also

mxGetNumberOfDimensions



 mxGetElementSize (C and Fortran)

1-213

mxGetElementSize (C and Fortran)
Number of bytes required to store each data element

C Syntax
#include "matrix.h"

size_t mxGetElementSize(const mxArray *pm);

Fortran Syntax
mwPointer mxGetElementSize(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Number of bytes required to store one element of the specified mxArray, if successful.
Returns 0 on failure. The primary reason for failure is that pm points to an mxArray
having an unrecognized class. If pm points to a cell mxArray or a structure mxArray,
mxGetElementSize returns the size of a pointer (not the size of all the elements in each
cell or structure field).

Description

Call mxGetElementSize to determine the number of bytes in each data element of the
mxArray. For example, if the MATLAB class of an mxArray is int16, the mxArray
stores each data element as a 16-bit (2-byte) signed integer. Thus, mxGetElementSize
returns 2.



1  API Reference

1-214

mxGetElementSize is helpful when using a non-MATLAB routine to manipulate data
elements. For example, the C function memcpy requires (for its third argument) the size
of the elements you intend to copy.

Note: Fortran does not have an equivalent of size_t. mwPointer is a preprocessor
macro that provides the appropriate Fortran type. The value returned by this function,
however, is not a pointer.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• doubleelement.c
• phonebook.c

See Also

mxGetM, mxGetN



 mxGetEps (C and Fortran)

1-215

mxGetEps (C and Fortran)
Value of EPS

C Syntax
#include "matrix.h"

double mxGetEps(void);

Fortran Syntax
real*8 mxGetEps

Returns
Value of the MATLAB eps variable

Description
Call mxGetEps to return the value of the MATLAB eps variable. This variable holds
the distance from 1.0 to the next largest floating-point number. As such, it is a measure
of floating-point accuracy. The MATLAB pinv and rank functions use eps as a default
tolerance.

Examples
See the following examples in matlabroot/extern/examples/mx.

• mxgeteps.c
• mxgetepsf.F

See Also
mxGetInf, mxGetNan



1  API Reference

1-216

mxGetField (C and Fortran)
Get field value from structure array, given index and field name

C Syntax
#include "matrix.h"

mxArray *mxGetField(const mxArray *pm, mwIndex index,

         const char *fieldname);

Fortran Syntax
mwPointer mxGetField(pm, index, fieldname)

mwPointer pm

mwIndex index

character*(*) fieldname

Arguments
pm

Pointer to a structure mxArray
index

Index of the desired element.

In C, the first element of an mxArray has an index of 0. The index of the last
element is N-1, where N is the number of elements in the array. In Fortran, the first
element of an mxArray has an index of 1. The index of the last element is N, where
N is the number of elements in the array.

fieldname

Name of the field whose value you want to extract.

Returns
Pointer to the mxArray in the specified field at the specified fieldname, on success.
Returns NULL in C (0 in Fortran) if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:



 mxGetField (C and Fortran)

1-217

• Specifying an array pointer pm that does not point to a structure mxArray. To
determine whether pm points to a structure mxArray, call mxIsStruct.

• Specifying an index to an element outside the bounds of the mxArray. For example,
given a structure mxArray that contains 10 elements, you cannot specify an index
greater than 9 in C (10 in Fortran).

• Specifying a nonexistent fieldname. Call mxGetFieldNameByNumber or
mxGetFieldNumber to get existing field names.

• Insufficient heap space.

If the pointer in the field is NULL, mxGetField allocates an empty, double mxArray.

Description

Call mxGetField to get the value held in the specified element of the specified field. In
pseudo-C terminology, mxGetField returns the value at:

pm[index].fieldname

mxGetFieldByNumber is like mxGetField. Both functions return the same value.
The only difference is in the way you specify the field. mxGetFieldByNumber takes a
field number as its third argument, and mxGetField takes a field name as its third
argument.

Do not call mxDestroyArray on an mxArray returned by the mxGetField function.

Note Inputs to a MEX-file are constant read-only mxArrays. Do not modify the inputs.
Using mxSetCell* or mxSetField* functions to modify the cells or fields of a MATLAB
argument causes unpredictable results.

In C, calling:

mxGetField(pa, index, "field_name");

is equivalent to calling:

field_num = mxGetFieldNumber(pa, "field_name");

mxGetFieldByNumber(pa, index, field_num);

where, if you have a 1-by-1 structure, index is 0.



1  API Reference

1-218

In Fortran, calling:

mxGetField(pm, index, 'fieldname')

is equivalent to calling:

fieldnum = mxGetFieldNumber(pm, 'fieldname')

mxGetFieldByNumber(pm, index, fieldnum)

where, if you have a 1-by-1 structure, index is 1.

Examples

See the following example in matlabroot/extern/examples/eng_mat.

• matreadstructarray.c

See Also

mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber



 mxGetFieldByNumber (C and Fortran)

1-219

mxGetFieldByNumber (C and Fortran)
Get field value from structure array, given index and field number

C Syntax
#include "matrix.h"

mxArray *mxGetFieldByNumber(const mxArray *pm, mwIndex index, 

         int fieldnumber);

Fortran Syntax
mwPointer mxGetFieldByNumber(pm, index, fieldnumber)

mwPointer pm

mwIndex index

integer*4 fieldnumber

Arguments
pm

Pointer to a structure mxArray
index

Index of the desired element.

In C, the first element of an mxArray has an index of 0. The index of the last
element is N-1, where N is the number of elements in the array. In Fortran, the first
element of an mxArray has an index of 1. The index of the last element is N, where
N is the number of elements in the array.

See mxCalcSingleSubscript for more details on calculating an index.
fieldnumber

Position of the field whose value you want to extract

In C, the first field within each element has a field number of 0, the second field has
a field number of 1, and so on. The last field has a field number of N-1, where N is the
number of fields.



1  API Reference

1-220

In Fortran, the first field within each element has a field number of 1, the second
field has a field number of 2, and so on. The last field has a field number of N, where
N is the number of fields.

Returns

Pointer to the mxArray in the specified field for the desired element, on success. Returns
NULL in C (0 in Fortran) if passed an invalid argument or if there is no value assigned to
the specified field. Common causes of failure include:

• Specifying an array pointer pm that does not point to a structure mxArray. Call
mxIsStruct to determine whether pm points to a structure mxArray.

• Specifying an index to an element outside the bounds of the mxArray. For example,
given a structure mxArray that contains ten elements, you cannot specify an index
greater than 9 in C (10 in Fortran).

• Specifying a nonexistent field number. Call mxGetFieldNumber to determine the
field number that corresponds to a given field name.

Description

Call mxGetFieldByNumber to get the value held in the specified fieldnumber at the
indexed element.

Do not call mxDestroyArray on an mxArray returned by the mxGetFieldByNumber
function.

Note Inputs to a MEX-file are constant read-only mxArrays. Do not modify the inputs.
Using mxSetCell* or mxSetField* functions to modify the cells or fields of a MATLAB
argument causes unpredictable results.

In C, calling:

mxGetField(pa, index, "field_name");

is equivalent to calling:

field_num = mxGetFieldNumber(pa, "field_name");



 mxGetFieldByNumber (C and Fortran)

1-221

mxGetFieldByNumber(pa, index, field_num);

where index is 0 if you have a 1-by-1 structure.

In Fortran, calling:

mxGetField(pm, index, 'fieldname')

is equivalent to calling:

fieldnum = mxGetFieldNumber(pm, 'fieldname')

mxGetFieldByNumber(pm, index, fieldnum)

where index is 1 if you have a 1-by-1 structure.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c

See the following examples in matlabroot/extern/examples/mx.

• mxisclass.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See Also

mxGetField, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber



1  API Reference

1-222

mxGetFieldNameByNumber (C and Fortran)

Get field name from structure array, given field number

C Syntax

#include "matrix.h"

const char *mxGetFieldNameByNumber(const mxArray *pm, 

            int fieldnumber);

Fortran Syntax

character*(*) mxGetFieldNameByNumber(pm, fieldnumber)

mwPointer pm

integer*4 fieldnumber

Arguments

pm

Pointer to a structure mxArray
fieldnumber

Position of the desired field. For instance, in C, to get the name of the first field, set
fieldnumber to 0; to get the name of the second field, set fieldnumber to 1; and
so on. In Fortran, to get the name of the first field, set fieldnumber to 1; to get the
name of the second field, set fieldnumber to 2; and so on.

Returns

Pointer to the nth field name, on success. Returns NULL in C (0 in Fortran) on failure.
Common causes of failure include

• Specifying an array pointer pm that does not point to a structure mxArray. Call
mxIsStruct to determine whether pm points to a structure mxArray.



 mxGetFieldNameByNumber (C and Fortran)

1-223

• Specifying a value of fieldnumber outside the bounds of the number of fields
in the structure mxArray. In C, fieldnumber 0 represents the first field, and
fieldnumber N-1 represents the last field, where N is the number of fields in the
structure mxArray. In Fortran, fieldnumber 1 represents the first field, and
fieldnumber N represents the last field.

Description

Call mxGetFieldNameByNumber to get the name of a field in the given structure
mxArray. A typical use of mxGetFieldNameByNumber is to call it inside a loop in order
to get the names of all the fields in a given mxArray.

Consider a MATLAB structure initialized to:

patient.name = 'John Doe';

patient.billing = 127.00;

patient.test = [79 75 73; 180 178 177.5; 220 210 205];

In C, the field number 0 represents the field name; field number 1 represents field
billing; field number 2 represents field test. A field number other than 0, 1, or 2
causes mxGetFieldNameByNumber to return NULL.

In Fortran, the field number 1 represents the field name; field number 2 represents field
billing; field number 3 represents field test. A field number other than 1, 2, or 3
causes mxGetFieldNameByNumber to return 0.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c

See the following examples in matlabroot/extern/examples/mx.

• mxisclass.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c



1  API Reference

1-224

See Also

mxGetField, mxGetFieldByNumber, mxGetFieldNumber, mxGetNumberOfFields,
mxIsStruct, mxSetField, mxSetFieldByNumber



 mxGetFieldNumber (C and Fortran)

1-225

mxGetFieldNumber (C and Fortran)
Get field number from structure array, given field name

C Syntax

#include "matrix.h"

int mxGetFieldNumber(const mxArray *pm, 

    const char *fieldname);

Fortran Syntax

integer*4 mxGetFieldNumber(pm, fieldname)

mwPointer pm

character*(*) fieldname

Arguments

pm

Pointer to a structure mxArray
fieldname

Name of a field in the structure mxArray

Returns

Field number of the specified fieldname, on success. In C, the first field has a field
number of 0, the second field has a field number of 1, and so on. In Fortran, the first field
has a field number of 1, the second field has a field number of 2, and so on. Returns -1 in
C (0 in Fortran) on failure. Common causes of failure include

• Specifying an array pointer pm that does not point to a structure mxArray. Call
mxIsStruct to determine whether pm points to a structure mxArray.

• Specifying the fieldname of a nonexistent field.



1  API Reference

1-226

Description

If you know the name of a field but do not know its field number, call
mxGetFieldNumber. Conversely, if you know the field number but do not know its field
name, call mxGetFieldNameByNumber.

For example, consider a MATLAB structure initialized to:

patient.name = 'John Doe';

patient.billing = 127.00;

patient.test = [79 75 73; 180 178 177.5; 220 210 205];

In C, the field name has a field number of 0; the field billing has a field number of 1;
and the field test has a field number of 2. If you call mxGetFieldNumber and specify a
field name of anything other than name, billing, or test, mxGetFieldNumber returns
-1.

Calling:

mxGetField(pa, index, "field_name");

is equivalent to calling:

field_num = mxGetFieldNumber(pa, "field_name");

mxGetFieldByNumber(pa, index, field_num);

where index is 0 if you have a 1-by-1 structure.

In Fortran, the field name has a field number of 1; the field billing has a field
number of 2; and the field test has a field number of 3. If you call mxGetFieldNumber
and specify a field name of anything other than name, billing, or test,
mxGetFieldNumber returns 0.

Calling:

mxGetField(pm, index, 'fieldname');

is equivalent to calling:

fieldnum = mxGetFieldNumber(pm, 'fieldname');

mxGetFieldByNumber(pm, index, fieldnum);

where index is 1 if you have a 1-by-1 structure.



 mxGetFieldNumber (C and Fortran)

1-227

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxcreatestructarray.c

See Also

mxGetField, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber



1  API Reference

1-228

mxGetImagData (C and Fortran)
Pointer to imaginary data elements in array

C Syntax
#include "matrix.h"

void *mxGetImagData(const mxArray *pm);

Fortran Syntax
mwPointer mxGetImagData(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Pointer to the first element of the imaginary data. Returns NULL in C (0 in Fortran) if
there is no imaginary data or if there is an error.

Description

This function is like mxGetPi, except that in C it returns a void *. For more
information, see the description for the mxGetData function.

Examples

See the following examples in matlabroot/extern/examples/mex.



 mxGetImagData (C and Fortran)

1-229

• explore.c

See the following examples in matlabroot/extern/examples/mx.

• mxisfinite.c

See Also

mxGetData, mxGetPi



1  API Reference

1-230

mxGetInf (C and Fortran)
Value of infinity

C Syntax
#include "matrix.h"

double mxGetInf(void);

Fortran Syntax
real*8 mxGetInf

Returns

Value of infinity on your system.

Description

Call mxGetInf to return the value of the MATLAB internal inf variable. inf is a
permanent variable representing IEEE® arithmetic positive infinity. Your system
specifies the value of inf; you cannot modify it.

Operations that return infinity include:

• Division by 0. For example, 5/0 returns infinity.
• Operations resulting in overflow. For example, exp(10000) returns infinity because

the result is too large to be represented on your machine.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxgetinf.c



 mxGetInf (C and Fortran)

1-231

See Also

mxGetEps, mxGetNaN



1  API Reference

1-232

mxGetIr (C and Fortran)
Sparse matrix IR array

C Syntax
#include "matrix.h"

mwIndex *mxGetIr(const mxArray *pm);

Fortran Syntax
mwPointer mxGetIr(pm)

mwPointer pm

Arguments
pm

Pointer to a sparse mxArray

Returns

Pointer to the first element in the ir array, if successful, and NULL in C (0 in Fortran)
otherwise. Possible causes of failure include:

• Specifying a full (nonsparse) mxArray.
• Specifying a value for pm that is NULL in C (0 in Fortran). This usually means that an

earlier call to mxCreateSparse failed.

Description

Use mxGetIr to obtain the starting address of the ir array. The ir array is an array of
integers. The length of ir is nzmax, the storage allocated for the sparse array, or nnz,
the number of nonzero matrix elements. For example, if nzmax equals 100, the ir array
contains 100 integers.



 mxGetIr (C and Fortran)

1-233

Each value in an ir array indicates a row (offset by 1) at which a nonzero element can
be found. (The jc array is an index that indirectly specifies a column where nonzero
elements can be found.)

For details on the ir and jc arrays, see mxSetIr and mxSetJc.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• fulltosparse.c
• fulltosparse.F

See the following examples in matlabroot/extern/examples/mx.

• mxsetdimensions.c
• mxsetnzmax.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See Also

mxGetJc, mxGetNzmax, mxSetIr, mxSetJc, mxSetNzmax, nzmax, nnz



1  API Reference

1-234

mxGetJc (C and Fortran)
Sparse matrix JC array

C Syntax
#include "matrix.h"

mwIndex *mxGetJc(const mxArray *pm);

Fortran Syntax
mwPointer mxGetJc(pm)

mwPointer pm

Arguments
pm

Pointer to a sparse mxArray

Returns

Pointer to the first element in the jc array, if successful, and NULL in C (0 in Fortran)
otherwise. Possible causes of failure include

• Specifying a full (nonsparse) mxArray.
• Specifying a value for pm that is NULL in C (0 in Fortran). This usually means that an

earlier call to mxCreateSparse failed.

Description

Use mxGetJc to obtain the starting address of the jc array. The jc array is an integer
array having n+1 elements, where n is the number of columns in the sparse mxArray.
The values in the jc array indirectly indicate columns containing nonzero elements. For
a detailed explanation of the jc array, see mxSetJc.



 mxGetJc (C and Fortran)

1-235

Examples

See the following examples in matlabroot/extern/examples/refbook.

• fulltosparse.c
• fulltosparse.F

See the following examples in matlabroot/extern/examples/mx.

• mxgetnzmax.c
• mxsetdimensions.c
• mxsetnzmax.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See Also

mxGetIr, mxGetNzmax, mxSetIr, mxSetJc, mxSetNzmax



1  API Reference

1-236

mxGetLogicals (C)

Pointer to logical array data

C Syntax

#include "matrix.h"

mxLogical *mxGetLogicals(const mxArray *array_ptr);

Arguments

array_ptr

Pointer to an mxArray

Returns

Pointer to the first logical element in the mxArray. The result is unspecified if the
mxArray is not a logical array.

Description

Call mxGetLogicals to access the first logical element in the mxArray that array_ptr
points to. Once you have the starting address, you can access any other element in the
mxArray.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxislogical.c



 mxGetLogicals (C)

1-237

See Also

mxCreateLogicalArray, mxCreateLogicalMatrix, mxCreateLogicalScalar,
mxIsLogical, mxIsLogicalScalar, mxIsLogicalScalarTrue



1  API Reference

1-238

mxGetM (C and Fortran)
Number of rows in array

C Syntax
#include "matrix.h"

size_t mxGetM(const mxArray *pm);

Fortran Syntax
mwPointer mxGetM(pm)

mwPointer pm

Arguments
pm

Pointer to an mxArray

Returns

Number of rows in the mxArray to which pm points.

Description

mxGetM returns the number of rows in the specified array. The term rows always means
the first dimension of the array, no matter how many dimensions the array has. For
example, if pm points to a four-dimensional array having dimensions 8-by-9-by-5-by-3,
mxGetM returns 8.

Note: Fortran does not have an equivalent of size_t. mwPointer is a preprocessor
macro that provides the appropriate Fortran type. The value returned by this function,
however, is not a pointer.



 mxGetM (C and Fortran)

1-239

Examples

See the following examples in matlabroot/extern/examples/refbook.

• convec.c
• fulltosparse.c
• matrixDivide.c
• matrixDivideComplex.c
• revord.c
• timestwo.c
• xtimesy.c

For Fortran examples, see:

• convec.F
• dblmat.F
• fulltosparse.F
• matsq.F
• timestwo.F
• xtimesy.F

See the following examples in matlabroot/extern/examples/mx.

• mxmalloc.c
• mxsetdimensions.c
• mxgetnzmax.c
• mxsetnzmax.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c
• mexlock.c
• yprime.c

See the following examples in matlabroot/extern/examples/eng_mat.

• matdemo2.F



1  API Reference

1-240

See Also

mxGetN, mxSetM, mxSetN



 mxGetN (C and Fortran)

1-241

mxGetN (C and Fortran)
Number of columns in array

C Syntax
#include "matrix.h"

size_t mxGetN(const mxArray *pm);

Fortran Syntax
mwPointer mxGetN(pm)

mwPointer pm

Arguments
pm

Pointer to an mxArray

Returns

Number of columns in the mxArray.

Description

Call mxGetN to determine the number of columns in the specified mxArray.

If pm is an N-dimensional mxArray, mxGetN is the product of dimensions 2 through N.
For example, if pm points to a four-dimensional mxArray having dimensions 13-by-5-
by-4-by-6, mxGetN returns the value 120 (5 × 4 × 6). If the specified mxArray has more
than two dimensions and you need to know exactly how many elements are in each
dimension, call mxGetDimensions.

If pm points to a sparse mxArray, mxGetN still returns the number of columns, not the
number of occupied columns.



1  API Reference

1-242

Note: Fortran does not have an equivalent of size_t. mwPointer is a preprocessor
macro that provides the appropriate Fortran type. The value returned by this function,
however, is not a pointer.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• convec.c
• fulltosparse.c
• revord.c
• timestwo.c
• xtimesy.c

See the following examples in matlabroot/extern/examples/mx.

• mxmalloc.c
• mxsetdimensions.c
• mxgetnzmax.c
• mxsetnzmax.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c
• mexlock.c
• yprime.c

See the following examples in matlabroot/extern/examples/eng_mat.

• matdemo2.F

See Also

mxGetM, mxGetDimensions, mxSetM, mxSetN



 mxGetNaN (C and Fortran)

1-243

mxGetNaN (C and Fortran)
Value of NaN (Not-a-Number)

C Syntax
#include "matrix.h"

double mxGetNaN(void);

Fortran Syntax
real*8 mxGetNaN

Returns

Value of NaN (Not-a-Number) on your system

Description

Call mxGetNaN to return the value of NaN for your system. NaN is the IEEE arithmetic
representation for Not-a-Number. Certain mathematical operations return NaN as a
result, for example,

• 0.0/0.0

• Inf-Inf

Your system specifies the value of Not-a-Number. You cannot modify it.

C Examples

See the following examples in matlabroot/extern/examples/mx.

• mxgetinf.c



1  API Reference

1-244

See Also

mxGetEps, mxGetInf



 mxGetNumberOfDimensions (C and Fortran)

1-245

mxGetNumberOfDimensions (C and Fortran)
Number of dimensions in array

C Syntax
#include "matrix.h"

mwSize mxGetNumberOfDimensions(const mxArray *pm);

Fortran Syntax
mwSize mxGetNumberOfDimensions(pm)

mwPointer pm

Arguments
pm

Pointer to an mxArray

Returns

Number of dimensions in the specified mxArray. The returned value is always 2 or
greater.

Description

Use mxGetNumberOfDimensions to determine how many dimensions are in the
specified array. To determine how many elements are in each dimension, call
mxGetDimensions.

Examples

See the following examples in matlabroot/extern/examples/mex.



1  API Reference

1-246

• explore.c

See the following examples in matlabroot/extern/examples/refbook.

• findnz.c
• fulltosparse.c
• phonebook.c

See the following examples in matlabroot/extern/examples/mx.

• mxcalcsinglesubscript.c
• mxgeteps.c
• mxisfinite.c

See Also

mxSetM, mxSetN, mxGetDimensions



 mxGetNumberOfElements (C and Fortran)

1-247

mxGetNumberOfElements (C and Fortran)
Number of elements in array

C Syntax
#include "matrix.h"

size_t mxGetNumberOfElements(const mxArray *pm);

Fortran Syntax
mwPointer mxGetNumberOfElements(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Number of elements in the specified mxArray

Description

mxGetNumberOfElements tells you how many elements an array has. For example,
if the dimensions of an array are 3-by-5-by-10, mxGetNumberOfElements returns the
number 150.

Note: Fortran does not have an equivalent of size_t. mwPointer is a preprocessor
macro that provides the appropriate Fortran type. The value returned by this function,
however, is not a pointer.



1  API Reference

1-248

Examples

See the following examples in matlabroot/extern/examples/refbook.

• findnz.c
• phonebook.c

See the following examples in matlabroot/extern/examples/mx.

• mxcalcsinglesubscript.c
• mxgeteps.c
• mxgetepsf.F
• mxgetinf.c
• mxisfinite.c
• mxsetdimensions.c
• mxsetdimensionsf.F

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See Also

mxGetDimensions, mxGetM, mxGetN, mxGetClassID, mxGetClassName



 mxGetNumberOfFields (C and Fortran)

1-249

mxGetNumberOfFields (C and Fortran)

Number of fields in structure array

C Syntax

#include "matrix.h"

int mxGetNumberOfFields(const mxArray *pm);

Fortran Syntax

integer*4 mxGetNumberOfFields(pm)

mwPointer pm

Arguments

pm

Pointer to a structure mxArray

Returns

Number of fields, on success. Returns 0 on failure. The most common cause of failure
is that pm is not a structure mxArray. Call mxIsStruct to determine whether pm is a
structure.

Description

Call mxGetNumberOfFields to determine how many fields are in the specified structure
mxArray.

Once you know the number of fields in a structure, you can loop through every field in
order to set or to get field values.



1  API Reference

1-250

Examples

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c

See the following examples in matlabroot/extern/examples/mx.

• mxisclass.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See Also

mxGetField, mxIsStruct, mxSetField



 mxGetNzmax (C and Fortran)

1-251

mxGetNzmax (C and Fortran)

Number of elements in IR, PR, and PI arrays

C Syntax

#include "matrix.h"

mwSize mxGetNzmax(const mxArray *pm);

Fortran Syntax

mwSize mxGetNzmax(pm)

mwPointer pm

Arguments

pm

Pointer to a sparse mxArray

Returns

Number of elements allocated to hold nonzero entries in the specified sparse mxArray, on
success. Returns an indeterminate value on error. The most likely cause of failure is that
pm points to a full (nonsparse) mxArray.

Description

Use mxGetNzmax to get the value of the nzmax field. The nzmax field holds an integer
value that signifies the number of elements in the ir, pr, and, if it exists, the pi arrays.
The value of nzmax is always greater than or equal to the number of nonzero elements
in a sparse mxArray. In addition, the value of nzmax is always less than or equal to the
number of rows times the number of columns.



1  API Reference

1-252

As you adjust the number of nonzero elements in a sparse mxArray, MATLAB software
often adjusts the value of the nzmax field. MATLAB adjusts nzmax in order to reduce the
number of costly reallocations and in order to optimize its use of heap space.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxgetnzmax.c
• mxsetnzmax.c

See Also

mxSetNzmax



 mxGetPi (C and Fortran)

1-253

mxGetPi (C and Fortran)
Imaginary data elements in array of type DOUBLE

C Syntax
#include "matrix.h"

double *mxGetPi(const mxArray *pm);

Fortran Syntax
mwPointer mxGetPi(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray of type double

Returns

Pointer to the imaginary data elements of the specified mxArray, on success. Returns
NULL in C (0 in Fortran) if there is no imaginary data or if there is an error.

Description

Use mxGetPi on arrays of type double only. Use mxIsDouble to validate the mxArray
type. For other mxArray types, use mxGetImagData.

The pi field points to an array containing the imaginary data of the mxArray. Call
mxGetPi to get the contents of the pi field, that is, to get the starting address of this
imaginary data.

The best way to determine whether an mxArray is purely real is to call mxIsComplex.



1  API Reference

1-254

If any of the input matrices to a function are complex, MATLAB allocates the imaginary
parts of all input matrices.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• convec.c
• findnz.c
• fulltosparse.c

For Fortran examples, see:

• convec.F

See the following examples in matlabroot/extern/examples/mx.

• mxcalcsinglesubscript.c
• mxgetinf.c
• mxisfinite.c
• mxsetnzmax.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c
• mexcallmatlab.c

See Also

mxGetPr, mxSetPi, mxSetPr, mxGetImagData, mxIsDouble



 mxGetPr (C and Fortran)

1-255

mxGetPr (C and Fortran)
Real data elements in array of type DOUBLE

C Syntax
#include "matrix.h"

double *mxGetPr(const mxArray *pm);

Fortran Syntax
mwPointer mxGetPr(pm)

mwPointer pm

Arguments
pm

Pointer to an mxArray of type double

Returns
Pointer to the first element of the real data. Returns NULL in C (0 in Fortran) if there is
no real data.

Description
Use mxGetPr on arrays of type double only. Use mxIsDouble to validate the mxArray
type. For other mxArray types, use mxGetData.

Call mxGetPr to access the real data in the mxArray that pm points to. Once you have
the starting address, you can access any other element in the mxArray.

Examples
See the following examples in matlabroot/extern/examples/refbook.



1  API Reference

1-256

• arrayFillGetPrDynamicData.c
• arrayFillGetPr.c
• convec.c
• doubleelement.c
• findnz.c
• fulltosparse.c
• matrixDivide.c
• matrixMultiply.c
• sincall.c
• timestwo.c
• timestwoalt.c
• xtimesy.c

For Fortran examples, see:

• convec.F
• dblmat.F
• fulltosparse.F
• matsq.F
• sincall.F
• timestwo.F
• xtimesy.F

See Also

mxGetPi, mxSetPi, mxSetPr, mxGetData, mxIsDouble



 mxGetProperty (C and Fortran)

1-257

mxGetProperty (C and Fortran)
Value of public property of MATLAB object

C Syntax
#include "matrix.h"

mxArray *mxGetProperty(const mxArray *pa, mwIndex index,

         const char *propname);

Fortran Syntax
mwPointer mxGetProperty(pa, index, propname)

mwPointer pa

mwIndex index

character*(*) propname

Arguments
pa

Pointer to an mxArray which is an object.
index

Index of the desired element of the object array.

In C, the first element of an mxArray has an index of 0. The index of the last
element is N-1, where N is the number of elements in the array. In Fortran, the first
element of an mxArray has an index of 1. The index of the last element is N, where
N is the number of elements in the array.

propname

Name of the property whose value you want to extract.

Returns

Pointer to the mxArray of the specified propname on success. Returns NULL in C (0 in
Fortran) if unsuccessful. Common causes of failure include:



1  API Reference

1-258

• Specifying a nonexistent propname.
• Specifying a nonpublic propname.
• Specifying an index to an element outside the bounds of the mxArray. To test the

index value, use mxGetNumberOfElements or mxGetM and mxGetN.
• Insufficient heap space.

Description

Call mxGetProperty to get the value held in the specified element. In pseudo-C
terminology, mxGetProperty returns the value at:

pa[index].propname

mxGetProperty makes a copy of the value. Creating a copy might be a concern if the
property uses a large amount of memory. There must be sufficient memory (in the heap)
to hold the copy of the value.

Examples

Display Name Property of timeseries Object

Create a MEX-file, dispproperty.c, in a folder on your MATLAB path.
/*=================================================================

 * dispproperty.c - Display timeseries Name property

 * This is a MEX-file for MATLAB.

 * Copyright 2013 The MathWorks, Inc.

 * All rights reserved.

 *=================================================================*/

 

#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, 

                 const mxArray *prhs[])

{

  /* Check for proper number of arguments. */

  if(nrhs!=1) {

    mexErrMsgIdAndTxt( "MATLAB:dispproperty:invalidNumInputs",

            "One input required.");

  } else if(nlhs>1) {

    mexErrMsgIdAndTxt( "MATLAB:dispproperty:maxlhs",

            "Too many output arguments.");



 mxGetProperty (C and Fortran)

1-259

  }

  /* Check for timeseries object. */

  if (!mxIsClass(prhs[0], "timeseries")) {

    mexErrMsgIdAndTxt( "MATLAB:dispproperty:invalidClass",

            "Input must be timeseries object.");

  }

  plhs[0] = mxGetProperty(prhs[0],0,"Name");  

  

}

Build the MEX-file.

mex('-v','dispproperty.c')

Create a timeseries object.

ts = timeseries(rand(5, 4),'Name','LaunchData');

Display name.

tsname = dispproperty(ts)

tsname =

LaunchData

Change Object Color

Open and build the mexgetproperty.c MEX-file in the matlabroot/extern/examples/
mex folder.

See Also

mxSetProperty, mxGetNumberOfElements, mxGetM, mxGetN

Introduced in R2008a



1  API Reference

1-260

mxGetScalar (C and Fortran)

Real component of first data element in array

C Syntax

#include "matrix.h"

double mxGetScalar(const mxArray *pm);

Fortran Syntax

real*8 mxGetScalar(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty
mxArray.

Returns

Pointer to the value of the first real (nonimaginary) element of the mxArray.

In C, mxGetScalar returns a double. If real elements in the mxArray are of a type
other than double, mxGetScalar automatically converts the scalar value into a
double. To preserve the original data representation of the scalar, cast the return value
to the desired data type.

If pm points to a sparse mxArray, mxGetScalar returns the value of the first nonzero
real element in the mxArray. If there are no nonzero elements, mxGetScalar returns 0.



 mxGetScalar (C and Fortran)

1-261

Description

Call mxGetScalar to get the value of the first real (nonimaginary) element of the
mxArray.

In most cases, you call mxGetScalar when pm points to an mxArray containing only
one element (a scalar). However, pm can point to an mxArray containing many elements.
If pm points to an mxArray containing multiple elements, mxGetScalar returns
the value of the first real element. For example, if pm points to a two-dimensional
mxArray, mxGetScalar returns the value of the (1,1) element. If pm points to a three-
dimensional mxArray, mxGetScalar returns the value of the (1,1,1) element; and so
on.

Use mxGetScalar on a nonempty mxArray of type numeric, logical, or char only. To test
for these conditions, use Matrix Library functions such as mxIsEmpty, mxIsLogical,
mxIsNumeric, or mxIsChar.

If the input value to mxGetScalar is type int64 or uint64, then the value might lose
precision if it is greater than flintmax.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• timestwoalt.c
• xtimesy.c

See the following examples in matlabroot/extern/examples/mex.

• mexlock.c
• mexlockf.F

See the following examples in matlabroot/extern/examples/mx.

• mxsetdimensions.c

See Also

mxGetM, mxGetN, mxIsScalar



1  API Reference

1-262

mxGetString (C and Fortran)
String array to C-style string or Fortran character array

C Syntax
#include "matrix.h"

int mxGetString(const mxArray *pm, char *str, mwSize strlen);

Fortran Syntax
integer*4 mxGetString(pm, str, strlen)

mwPointer pm

character*(*) str

mwSize strlen

Arguments
pm

Pointer to a string mxArray; that is, a pointer to an mxArray having the
mxCHAR_CLASS class.

str

Starting location for the string. mxGetString writes the character data into str and
then, in C, terminates the string with a NULL character (in the manner of C strings).
str can point to either dynamic or static memory.

strlen

Size in bytes of destination buffer pointed to by str. Typically, in C, you set strlen
to 1 plus the number of elements in the string mxArray to which pm points. See the
mxGetM and mxGetN reference pages to find out how to get the number of elements.

Do not use with “Multibyte Encoded Characters” on page 1-263.

Returns

0 on success or if strlen == 0, and 1 on failure. Possible reasons for failure include



 mxGetString (C and Fortran)

1-263

• mxArray is not a string array.
• strlen is not large enough to store the entire mxArray. If so, the function returns 1

and truncates the string.

Description
Call mxGetString to copy the character data of a string mxArray into a C-style string in
C or a character array in Fortran. The copied string starts at str and contains no more
than strlen-1 characters in C (no more than strlen characters in Fortran). In C, the
C-style string is always terminated with a NULL character.

If the string array contains several rows, the function copies them into one long string
array, one column at a time.

Multibyte Encoded Characters

Use this function only with strings represented in single-byte encoding schemes.
For strings represented in multibyte encoding schemes, use the C function
mxArrayToString. Fortran users must allocate sufficient space for the return string to
avoid possible truncation.

Examples
See the following examples in matlabroot/extern/examples/mx.

• mxmalloc.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See the following examples in matlabroot/extern/examples/refbook.

• revord.F

See Also
mxArrayToString, mxCreateCharArray, mxCreateCharMatrixFromStrings,
mxCreateString, mxGetChars



1  API Reference

1-264

mxIsCell (C and Fortran)
Determine whether input is cell array

C Syntax
#include "matrix.h"

bool mxIsCell(const mxArray *pm);

Fortran Syntax
integer*4 mxIsCell(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if pm points to an array having the class mxCELL_CLASS, and logical 0
(false) otherwise.

Description

Use mxIsCell to determine whether the specified array is a cell array.

In C, calling mxIsCell is equivalent to calling:

mxGetClassID(pm) == mxCELL_CLASS

In Fortran, calling mxIsCell is equivalent to calling:

mxGetClassName(pm) .eq. 'cell'



 mxIsCell (C and Fortran)

1-265

Note mxIsCell does not answer the question “Is this mxArray a cell of a cell array?” An
individual cell of a cell array can be of any type.

See Also

mxIsClass



1  API Reference

1-266

mxIsChar (C and Fortran)
Determine whether input is string array

C Syntax
#include "matrix.h"

bool mxIsChar(const mxArray *pm);

Fortran Syntax
integer*4 mxIsChar(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if pm points to an array having the class mxCHAR_CLASS, and logical 0
(false) otherwise.

Description

Use mxIsChar to determine whether pm points to string mxArray.

In C, calling mxIsChar is equivalent to calling:

mxGetClassID(pm) == mxCHAR_CLASS

In Fortran, calling mxIsChar is equivalent to calling:

mxGetClassName(pm) .eq. 'char'



 mxIsChar (C and Fortran)

1-267

Examples

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c
• revord.c

See the following examples in matlabroot/extern/examples/mx.

• mxcreatecharmatrixfromstr.c
• mxislogical.c
• mxmalloc.c

See Also

mxIsClass, mxGetClassID



1  API Reference

1-268

mxIsClass (C and Fortran)
Determine whether array is member of specified class

C Syntax
#include "matrix.h"

bool mxIsClass(const mxArray *pm, const char *classname);

Fortran Syntax
integer*4 mxIsClass(pm, classname)

mwPointer pm

character*(*) classname

Arguments

pm

Pointer to an mxArray
classname

Array category you are testing. Specify classname as a string (not as an integer
identifier). You can specify any one of the following predefined constants:

Value of classname Corresponding Class

cell mxCELL_CLASS

char mxCHAR_CLASS

double mxDOUBLE_CLASS

function_handle mxFUNCTION_CLASS

int8 mxINT8_CLASS

int16 mxINT16_CLASS

int32 mxINT32_CLASS

int64 mxINT64_CLASS



 mxIsClass (C and Fortran)

1-269

Value of classname Corresponding Class

logical mxLOGICAL_CLASS

single mxSINGLE_CLASS

struct mxSTRUCT_CLASS

uint8 mxUINT8_CLASS

uint16 mxUINT16_CLASS

uint32 mxUINT32_CLASS

uint64 mxUINT64_CLASS

<class_name> <class_id>

unknown mxUNKNOWN_CLASS

In the table, <class_name> represents the name of a specific MATLAB custom object.
You can also specify one of your own class names.

Returns

Logical 1 (true) if pm points to an array having category classname, and logical 0
(false) otherwise.

Description

Each mxArray is tagged as being a certain type. Call mxIsClass to determine whether
the specified mxArray has this type.

In C:

mxIsClass(pm, "double");

is equivalent to calling either of these forms:

mxIsDouble(pm);

strcmp(mxGetClassName(pm), "double");

In Fortran:



1  API Reference

1-270

mxIsClass(pm, 'double')

is equivalent to calling either one of the following:

mxIsDouble(pm)

mxGetClassName(pm) .eq. 'double'

It is most efficient to use the mxIsDouble form.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxisclass.c

See Also

mxClassID, mxGetClassID, mxIsEmpty, mxGetClassName



 mxIsComplex (C and Fortran)

1-271

mxIsComplex (C and Fortran)
Determine whether data is complex

C Syntax
#include "matrix.h"

bool mxIsComplex(const mxArray *pm);

Fortran Syntax
integer*4 mxIsComplex(pm)

mwPointer pm

Arguments
pm

Pointer to an mxArray

Returns
Logical 1 (true) if pm is a numeric array containing complex data, and logical 0 (false)
otherwise. If pm points to a cell array or a structure array, mxIsComplex returns false.

Description
Use mxIsComplex to determine whether an imaginary part is allocated for an mxArray.
The imaginary pointer pi is NULL in C (0 in Fortran) if an mxArray is purely real and
does not have any imaginary data. If an mxArray is complex, pi points to an array of
numbers.

Examples
See the following examples in matlabroot/extern/examples/mx.



1  API Reference

1-272

• mxisfinite.c
• mxgetinf.c

See the following examples in matlabroot/extern/examples/refbook.

• convec.c
• convec.F
• fulltosparse.F
• phonebook.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c
• yprime.c
• mexlock.c

See Also

mxIsNumeric



 mxIsDouble (C and Fortran)

1-273

mxIsDouble (C and Fortran)
Determine whether mxArray represents data as double-precision, floating-point numbers

C Syntax
#include "matrix.h"

bool mxIsDouble(const mxArray *pm);

Fortran Syntax
integer*4 mxIsDouble(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if the mxArray stores its data as double-precision, floating-point
numbers, and logical 0 (false) otherwise.

Description

Call mxIsDouble to determine whether the specified mxArray represents its real and
imaginary data as double-precision, floating-point numbers.

Older versions of MATLAB software store all mxArray data as double-precision, floating-
point numbers. However, starting with MATLAB Version 5 software, MATLAB can store
real and imaginary data in various numerical formats.

In C, calling mxIsDouble is equivalent to calling:



1  API Reference

1-274

mxGetClassID(pm) == mxDOUBLE_CLASS

In Fortran, calling mxIsDouble is equivalent to calling:

mxGetClassName(pm) .eq. 'double'

Examples

See the following examples in matlabroot/extern/examples/refbook.

• fulltosparse.c
• fulltosparse.F

See the following examples in matlabroot/extern/examples/mx.

• mxgeteps.c
• mxgetepsf.F

See Also

mxIsClass, mxGetClassID



 mxIsEmpty (C and Fortran)

1-275

mxIsEmpty (C and Fortran)
Determine whether array is empty

C Syntax
#include "matrix.h"

bool mxIsEmpty(const mxArray *pm);

Fortran Syntax
integer*4 mxIsEmpty(pm)

mwPointer pm

Arguments
pm

Pointer to an mxArray

Returns

Logical 1 (true) if the mxArray is empty, and logical 0 (false) otherwise.

Description

Use mxIsEmpty to determine whether an mxArray contains no data. An mxArray is
empty if the size of any of its dimensions is 0.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxisfinite.c



1  API Reference

1-276

See Also

mxIsClass



 mxIsFinite (C and Fortran)

1-277

mxIsFinite (C and Fortran)
Determine whether input is finite

C Syntax
#include "matrix.h"

bool mxIsFinite(double value);

Fortran Syntax
integer*4 mxIsFinite(value)

real*8 value

Arguments
value

Double-precision, floating-point number you are testing

Returns

Logical 1 (true) if value is finite, and logical 0 (false) otherwise.

Description

Call mxIsFinite to determine whether value is finite. A number is finite if it is greater
than -Inf and less than Inf.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxisfinite.c



1  API Reference

1-278

See Also

mxIsInf, mxIsNan



 mxIsFromGlobalWS (C and Fortran)

1-279

mxIsFromGlobalWS (C and Fortran)
Determine whether array was copied from MATLAB global workspace

C Syntax
#include "matrix.h"

bool mxIsFromGlobalWS(const mxArray *pm);

Fortran Syntax
integer*4 mxIsFromGlobalWS(pm)

mwPointer pm

Arguments
pm

Pointer to an mxArray

Returns

Logical 1 (true) if the array was copied out of the global workspace, and logical 0
(false) otherwise.

Description

mxIsFromGlobalWS is useful for standalone MAT-file programs.

Examples

See the following examples in matlabroot/extern/examples/eng_mat.

• matcreat.c



1  API Reference

1-280

• matdgns.c

See the following examples in matlabroot/extern/examples/mx.

• mxislogical.c



 mxIsInf (C and Fortran)

1-281

mxIsInf (C and Fortran)
Determine whether input is infinite

C Syntax
#include "matrix.h"

bool mxIsInf(double value);

Fortran Syntax
integer*4 mxIsInf(value)

real*8 value

Arguments

value

Double-precision, floating-point number you are testing

Returns

Logical 1 (true) if value is infinite, and logical 0 (false) otherwise.

Description

Call mxIsInf to determine whether value is equal to infinity or minus infinity.
MATLAB software stores the value of infinity in a permanent variable named Inf, which
represents IEEE arithmetic positive infinity. The value of the variable Inf is built into
the system; you cannot modify it.

Operations that return infinity include

• Division by 0. For example, 5/0 returns infinity.



1  API Reference

1-282

• Operations resulting in overflow. For example, exp(10000) returns infinity because
the result is too large to be represented on your machine.

If value equals NaN (Not-a-Number), mxIsInf returns false. In other words, NaN is not
equal to infinity.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxisfinite.c

See Also

mxIsFinite, mxIsNaN



 mxIsInt16 (C and Fortran)

1-283

mxIsInt16 (C and Fortran)
Determine whether array represents data as signed 16-bit integers

C Syntax
#include "matrix.h"

bool mxIsInt16(const mxArray *pm);

Fortran Syntax
integer*4 mxIsInt16(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if the array stores its data as signed 16-bit integers, and logical 0
(false) otherwise.

Description

Use mxIsInt16 to determine whether the specified array represents its real and
imaginary data as 16-bit signed integers.

In C, calling mxIsInt16 is equivalent to calling:

mxGetClassID(pm) == mxINT16_CLASS

In Fortran, calling mxIsInt16 is equivalent to calling:



1  API Reference

1-284

mxGetClassName(pm) == 'int16'

See Also

mxIsClass, mxGetClassID, mxIsInt8, mxIsInt32, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64



 mxIsInt32 (C and Fortran)

1-285

mxIsInt32 (C and Fortran)
Determine whether array represents data as signed 32-bit integers

C Syntax
#include "matrix.h"

bool mxIsInt32(const mxArray *pm);

Fortran Syntax
integer*4 mxIsInt32(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if the array stores its data as signed 32-bit integers, and logical 0
(false) otherwise.

Description

Use mxIsInt32 to determine whether the specified array represents its real and
imaginary data as 32-bit signed integers.

In C, calling mxIsInt32 is equivalent to calling:

mxGetClassID(pm) == mxINT32_CLASS

In Fortran, calling mxIsInt32 is equivalent to calling:



1  API Reference

1-286

mxGetClassName(pm) == 'int32'

See Also

mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64



 mxIsInt64 (C and Fortran)

1-287

mxIsInt64 (C and Fortran)
Determine whether array represents data as signed 64-bit integers

C Syntax
#include "matrix.h"

bool mxIsInt64(const mxArray *pm);

Fortran Syntax
integer*4 mxIsInt64(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if the array stores its data as signed 64-bit integers, and logical 0
(false) otherwise.

Description

Use mxIsInt64 to determine whether the specified array represents its real and
imaginary data as 64-bit signed integers.

In C, calling mxIsInt64 is equivalent to calling:

mxGetClassID(pm) == mxINT64_CLASS

In Fortran, calling mxIsInt64 is equivalent to calling:



1  API Reference

1-288

mxGetClassName(pm) == 'int64'

See Also

mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64



 mxIsInt8 (C and Fortran)

1-289

mxIsInt8 (C and Fortran)
Determine whether array represents data as signed 8-bit integers

C Syntax
#include "matrix.h"

bool mxIsInt8(const mxArray *pm);

Fortran Syntax
integer*4 mxIsInt8(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if the array stores its data as signed 8-bit integers, and logical 0 (false)
otherwise.

Description

Use mxIsInt8 to determine whether the specified array represents its real and
imaginary data as 8-bit signed integers.

In C, calling mxIsInt8 is equivalent to calling:

mxGetClassID(pm) == mxINT8_CLASS

In Fortran, calling mxIsInt8 is equivalent to calling:



1  API Reference

1-290

mxGetClassName(pm) .eq. 'int8'

See Also

mxIsClass, mxGetClassID, mxIsInt16, mxIsInt32, mxIsInt64, mxIsUint8,
mxIsUint16, mxIsUint32, mxIsUint64



 mxIsLogical (C and Fortran)

1-291

mxIsLogical (C and Fortran)
Determine whether array is of type mxLogical

C Syntax
#include "matrix.h"

bool mxIsLogical(const mxArray *pm);

Fortran Syntax
integer*4 mxIsLogical(pm)

mwPointer pm

Arguments
pm

Pointer to an mxArray

Returns

Logical 1 (true) if pm points to a logical mxArray. Otherwise, it returns logical 0
(false).

Description

Use mxIsLogical to determine whether MATLAB software treats the data in the
mxArray as Boolean (logical). If an mxArray is logical, MATLAB treats all zeros as
meaning false and all nonzero values as meaning true.

Examples

See the following examples in matlabroot/extern/examples/mx.



1  API Reference

1-292

• mxislogical.c

See Also
mxIsClass

More About
• “Logical Operations”



 mxIsLogicalScalar (C)

1-293

mxIsLogicalScalar (C)
Determine whether scalar array is of type mxLogical

C Syntax
#include "matrix.h"

bool mxIsLogicalScalar(const mxArray *array_ptr);

Arguments

array_ptr

Pointer to an mxArray

Returns

Logical 1 (true) if the mxArray is of class mxLogical and has 1-by-1 dimensions.
Otherwise, it returns logical 0 (false).

Description

Use mxIsLogicalScalar to determine whether MATLAB treats the scalar data in the
mxArray as logical or numerical.

See Also
mxGetLogicals | mxGetScalar | mxIsLogical | mxIsLogicalScalarTrue

More About
• “Logical Operations”



1  API Reference

1-294

mxIsLogicalScalarTrue (C)
Determine whether scalar array of type mxLogical is true

C Syntax
#include "matrix.h"

bool mxIsLogicalScalarTrue(const mxArray *array_ptr);

Arguments

array_ptr

Pointer to an mxArray

Returns

Logical 1 (true) if the value of the mxArray's logical, scalar element is true. Otherwise,
it returns logical 0 (false).

Description

Use mxIsLogicalScalarTrue to determine whether the value of a scalar mxArray is
true or false.

See Also
mxGetLogicals | mxGetScalar | mxIsLogical | mxIsLogicalScalar

More About
• “Logical Operations”



 mxIsNaN (C and Fortran)

1-295

mxIsNaN (C and Fortran)
Determine whether input is NaN (Not-a-Number)

C Syntax
#include "matrix.h"

bool mxIsNaN(double value);

Fortran Syntax
integer*4 mxIsNaN(value)

real*8 value

Arguments
value

Double-precision, floating-point number you are testing

Returns

Logical 1 (true) if value is NaN (Not-a-Number), and logical 0 (false) otherwise.

Description

Call mxIsNaN to determine whether value is NaN. NaN is the IEEE arithmetic
representation for Not-a-Number. A NaN is obtained as a result of mathematically
undefined operations such as

• 0.0/0.0

• Inf-Inf

The system understands a family of bit patterns as representing NaN. In other words,
NaN is not a single value; rather, it is a family of numbers that MATLAB software (and
other IEEE-compliant applications) uses to represent an error condition or missing data.



1  API Reference

1-296

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxisfinite.c

See the following examples in matlabroot/extern/examples/refbook.

• findnz.c
• fulltosparse.c

See Also

mxIsFinite, mxIsInf



 mxIsNumeric (C and Fortran)

1-297

mxIsNumeric (C and Fortran)
Determine whether array is numeric

C Syntax
#include "matrix.h"

bool mxIsNumeric(const mxArray *pm);

Fortran Syntax
integer*4 mxIsNumeric(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if the array can contain numeric data. The following class IDs represent
storage types for arrays that can contain numeric data:

• mxDOUBLE_CLASS

• mxSINGLE_CLASS

• mxINT8_CLASS

• mxUINT8_CLASS

• mxINT16_CLASS

• mxUINT16_CLASS

• mxINT32_CLASS

• mxUINT32_CLASS



1  API Reference

1-298

• mxINT64_CLASS

• mxUINT64_CLASS

Logical 0 (false) if the array cannot contain numeric data.

Description

Call mxIsNumeric to determine whether the specified array contains numeric data.
If the specified array has a storage type that represents numeric data, mxIsNumeric
returns logical 1 (true). Otherwise, mxIsNumeric returns logical 0 (false).

Call mxGetClassID to determine the exact storage type.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c

See the following examples in matlabroot/extern/examples/eng_mat.

• matdemo1.F

See Also

mxGetClassID



 mxIsScalar (C)

1-299

mxIsScalar (C)
Determine whether array is scalar array

C Syntax
#include "matrix.h"

bool mxIsScalar(const mxArray *array_ptr);

Arguments

array_ptr

Pointer to an mxArray

Returns

Logical 1 (true) if the mxArray has 1-by-1 dimensions. Otherwise, it returns logical 0
(false).

Example

Copy the following statements into a text editor and save the file as mxisscalar.c in a
writable folder.

/*=================================================================

 * mxisscalar.c 

 * This example tests an input variable. 

 * If the input is a scalar, returns the scalar value. 

 * Otherwise, displays an error message.

 *

 * This is a MEX-file for MATLAB.  

 * Copyright 2015 The MathWorks, Inc.

 *=================================================================*/

#include "mex.h"



1  API Reference

1-300

void mexFunction(int nlhs,mxArray *plhs[],int nrhs,const mxArray *prhs[])

{

    double variable;

    

    /* Check for proper number of input and output arguments */

    if (nrhs != 1) {

        mexErrMsgIdAndTxt( "MATLAB:mxIsScalar:invalidNumInputs",

                "One input argument required.");

    }

    if(nlhs > 1){

        mexErrMsgIdAndTxt( "MATLAB:mxIsScalar:maxlhs",

                "Too many output arguments.");

    }

    

    /* Check to be sure input argument is a scalar */

    if (!(mxIsScalar(prhs[0]))){

        mexErrMsgIdAndTxt( "MATLAB:mxIsScalar:invalidInputType",

                "Input must be a scalar.");

    }

    

    /* Get input variable */

    variable = mxGetScalar(prhs[0]);

    /* Initialize a scalar double precision array */

    plhs[0] = mxCreateDoubleScalar(variable);

    

}

To build the MEX-file, type:

mex -v mxisscalar.c

Test the function. If the input is a scalar, mxisscalar returns the scalar value.

mxisscalar(1)

ans =

     1

If the input is a not a scalar, mxisscalar displays an error message.

mxisscalar('hello')

Error using mxisscalar



 mxIsScalar (C)

1-301

Input must be a scalar.

See Also
mxGetScalar

Introduced in R2015a



1  API Reference

1-302

mxIsSingle (C and Fortran)
Determine whether array represents data as single-precision, floating-point numbers

C Syntax
#include "matrix.h"

bool mxIsSingle(const mxArray *pm);

Fortran Syntax
integer*4 mxIsSingle(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if the array stores its data as single-precision, floating-point numbers,
and logical 0 (false) otherwise.

Description

Use mxIsSingle to determine whether the specified array represents its real and
imaginary data as single-precision, floating-point numbers.

In C, calling mxIsSingle is equivalent to calling:

mxGetClassID(pm) == mxSINGLE_CLASS

In Fortran, calling mxIsSingle is equivalent to calling:



 mxIsSingle (C and Fortran)

1-303

mxGetClassName(pm) .eq. 'single'

See Also

mxIsClass, mxGetClassID



1  API Reference

1-304

mxIsSparse (C and Fortran)
Determine whether input is sparse array

C Syntax
#include "matrix.h"

bool mxIsSparse(const mxArray *pm);

Fortran Syntax
integer*4 mxIsSparse(pm)

mwPointer pm

Arguments
pm

Pointer to an mxArray

Returns

Logical 1 (true) if pm points to a sparse mxArray, and logical 0 (false) otherwise. A
false return value means that pm points to a full mxArray or that pm does not point to a
valid mxArray.

Description

Use mxIsSparse to determine whether pm points to a sparse mxArray. Many routines
(for example, mxGetIr and mxGetJc) require a sparse mxArray as input.

Examples

See the following examples in matlabroot/extern/examples/refbook.



 mxIsSparse (C and Fortran)

1-305

• phonebook.c

See the following examples in matlabroot/extern/examples/mx.

• mxgetnzmax.c
• mxsetdimensions.c
• mxsetdimensionsf.F
• mxsetnzmax.c

See Also

sparse, mxGetIr, mxGetJc, mxCreateSparse



1  API Reference

1-306

mxIsStruct (C and Fortran)
Determine whether input is structure array

C Syntax
#include "matrix.h"

bool mxIsStruct(const mxArray *pm);

Fortran Syntax
integer*4 mxIsStruct(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if pm points to a structure mxArray, and logical 0 (false) otherwise.

Description

Use mxIsStruct to determine whether pm points to a structure mxArray. Many routines
(for example, mxGetFieldNameByNumber and mxSetField) require a structure
mxArray as an argument.

Examples

See the following examples in matlabroot/extern/examples/refbook.



 mxIsStruct (C and Fortran)

1-307

• phonebook.c

See Also

mxCreateStructArray, mxCreateStructMatrix, mxGetFieldNameByNumber,
mxGetField, mxSetField



1  API Reference

1-308

mxIsUint16 (C and Fortran)
Determine whether array represents data as unsigned 16-bit integers

C Syntax
#include "matrix.h"

bool mxIsUint16(const mxArray *pm);

Fortran Syntax
integer*4 mxIsUint16(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if the mxArray stores its data as unsigned 16-bit integers, and logical 0
(false) otherwise.

Description

Use mxIsUint16 to determine whether the specified mxArray represents its real and
imaginary data as 16-bit unsigned integers.

In C, calling mxIsUint16 is equivalent to calling:

mxGetClassID(pm) == mxUINT16_CLASS

In Fortran, calling mxIsUint16 is equivalent to calling:



 mxIsUint16 (C and Fortran)

1-309

mxGetClassName(pm) .eq. 'uint16'

See Also

mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32, mxIsInt64,
mxIsUint8, mxIsUint32, mxIsUint64



1  API Reference

1-310

mxIsUint32 (C and Fortran)
Determine whether array represents data as unsigned 32-bit integers

C Syntax
#include "matrix.h"

bool mxIsUint32(const mxArray *pm);

Fortran Syntax
integer*4 mxIsUint32(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if the mxArray stores its data as unsigned 32-bit integers, and logical 0
(false) otherwise.

Description

Use mxIsUint32 to determine whether the specified mxArray represents its real and
imaginary data as 32-bit unsigned integers.

In C, calling mxIsUint32 is equivalent to calling:

mxGetClassID(pm) == mxUINT32_CLASS

In Fortran, calling mxIsUint32 is equivalent to calling:



 mxIsUint32 (C and Fortran)

1-311

mxGetClassName(pm) .eq. 'uint32'

See Also

mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32, mxIsInt64,
mxIsUint8, mxIsUint16, mxIsUint64



1  API Reference

1-312

mxIsUint64 (C and Fortran)
Determine whether array represents data as unsigned 64-bit integers

C Syntax
#include "matrix.h"

bool mxIsUint64(const mxArray *pm);

Fortran Syntax
integer*4 mxIsUint64(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if the mxArray stores its data as unsigned 64-bit integers, and logical 0
(false) otherwise.

Description

Use mxIsUint64 to determine whether the specified mxArray represents its real and
imaginary data as 64-bit unsigned integers.

In C, calling mxIsUint64 is equivalent to calling:

mxGetClassID(pm) == mxUINT64_CLASS

In Fortran, calling mxIsUint64 is equivalent to calling:



 mxIsUint64 (C and Fortran)

1-313

mxGetClassName(pm) .eq. 'uint64'

See Also

mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32, mxIsInt64,
mxIsUint8, mxIsUint16, mxIsUint32



1  API Reference

1-314

mxIsUint8 (C and Fortran)
Determine whether array represents data as unsigned 8-bit integers

C Syntax
#include "matrix.h"

bool mxIsUint8(const mxArray *pm);

Fortran Syntax
integer*4 mxIsUint8(pm)

mwPointer pm

Arguments

pm

Pointer to an mxArray

Returns

Logical 1 (true) if the mxArray stores its data as unsigned 8-bit integers, and logical 0
(false) otherwise.

Description

Use mxIsUint8 to determine whether the specified mxArray represents its real and
imaginary data as 8-bit unsigned integers.

In C, calling mxIsUint8 is equivalent to calling:

mxGetClassID(pm) == mxUINT8_CLASS

In Fortran, calling mxIsUint8 is equivalent to calling:



 mxIsUint8 (C and Fortran)

1-315

mxGetClassName(pm) .eq. 'uint8'

See Also

mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32, mxIsInt64,
mxIsUint16, mxIsUint32, mxIsUint64



1  API Reference

1-316

mxLogical (C)
Type for logical array

Description

All logical mxArrays store their data elements as mxLogical rather than as bool.

The header file containing this type is:

#include "matrix.h"

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxislogical.c

Tips

• For information about data in MATLAB language scripts and functions, see “Data
Types”.

See Also

mxCreateLogicalArray



 mxMalloc (C and Fortran)

1-317

mxMalloc (C and Fortran)
Allocate uninitialized dynamic memory using MATLAB memory manager

C Syntax
#include "matrix.h"

#include <stdlib.h>

void *mxMalloc(mwSize n);

Fortran Syntax
mwPointer mxMalloc(n)

mwSize n

Arguments
n

Number of bytes to allocate for n greater than 0

Returns
Pointer to the start of the allocated dynamic memory, if successful. If unsuccessful in a
MAT or engine standalone application, mxMalloc returns NULL in C (0 in Fortran). If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the MATLAB
prompt.

mxMalloc is unsuccessful when there is insufficient free heap space.

If you call mxMalloc in C with value n = 0, MATLAB returns either NULL or a valid
pointer.

Description
mxMalloc allocates contiguous heap space sufficient to hold n bytes. Use mxMalloc
instead of the ANSI C malloc function to allocate memory in MATLAB applications.



1  API Reference

1-318

In MEX-files, but not MAT or engine applications, mxMalloc registers the allocated
memory with the MATLAB memory manager. When control returns to the MATLAB
prompt, the memory manager then automatically frees, or deallocates, this memory.

How you manage the memory created by this function depends on the purpose of the
data assigned to it. If you assign it to an output argument in plhs[] using the mxSetPr
function, MATLAB is responsible for freeing the memory.

If you use the data internally, the MATLAB memory manager maintains a list of all
memory allocated by the function and automatically frees (deallocates) the memory
when control returns to the MATLAB prompt. In general, we recommend that MEX-file
functions destroy their own temporary arrays and free their own dynamically allocated
memory. It is more efficient to perform this cleanup in the source MEX-file than to rely
on the automatic mechanism. Therefore, when you finish using the memory allocated by
this function, call mxFree to deallocate the memory.

If you do not assign this data to an output argument, and you want it to persist after the
MEX-file completes, call mexMakeMemoryPersistent after calling this function. If you
write a MEX-file with persistent memory, be sure to register a mexAtExit function to
free allocated memory in the event your MEX-file is cleared.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxmalloc.c
• mxsetdimensions.c

See the following examples in matlabroot/extern/examples/refbook.

• arrayFillSetPr.c

See Also

mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent, mxCalloc,
mxDestroyArray, mxFree, mxRealloc



 mxRealloc (C and Fortran)

1-319

mxRealloc (C and Fortran)

Reallocate dynamic memory using MATLAB memory manager

C Syntax

#include "matrix.h"

#include <stdlib.h>

void *mxRealloc(void *ptr, mwSize size);

Fortran Syntax

mwPointer mxRealloc(ptr, size)

mwPointer ptr

mwSize size

Arguments

ptr

Pointer to a block of memory allocated by mxCalloc, mxMalloc, or mxRealloc.
size

New size of allocated memory, in bytes.

Returns

Pointer to the start of the reallocated block of memory, if successful. If unsuccessful in a
MAT or engine standalone application, mxRealloc returns NULL in C (0 in Fortran) and
leaves the original memory block unchanged. (Use mxFree to free the original memory
block). If unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt.

mxRealloc is unsuccessful when there is insufficient free heap space.



1  API Reference

1-320

Description

mxRealloc changes the size of a memory block that has been allocated with mxCalloc,
mxMalloc, or mxRealloc. Use mxRealloc instead of the ANSI C realloc function to
allocate memory in MATLAB applications.

mxRealloc changes the size of the memory block pointed to by ptr to size bytes. The
contents of the reallocated memory are unchanged up to the smaller of the new and old
sizes. The reallocated memory might be in a different location from the original memory,
so the returned pointer can be different from ptr. If the memory location changes,
mxRealloc frees the original memory block pointed to by ptr.

If size is greater than 0 and ptr is NULL in C (0 in Fortran), mxRealloc behaves like
mxMalloc, allocating a new block of memory of size bytes and returning a pointer to the
new block.

If size is 0 and ptr is not NULL in C (0 in Fortran), mxRealloc frees the memory
pointed to by ptr and returns NULL in C (0 in Fortran).

In MEX-files, but not MAT or engine applications, mxRealloc registers the allocated
memory with the MATLAB memory manager. When control returns to the MATLAB
prompt, the memory manager then automatically frees, or deallocates, this memory.

How you manage the memory created by this function depends on the purpose of the
data assigned to it. If you assign it to an output argument in plhs[] using the mxSetPr
function, MATLAB is responsible for freeing the memory.

If you use the data internally, the MATLAB memory manager maintains a list of all
memory allocated by the function and automatically frees (deallocates) the memory
when control returns to the MATLAB prompt. In general, we recommend that MEX-file
functions destroy their own temporary arrays and free their own dynamically allocated
memory. It is more efficient to perform this cleanup in the source MEX-file than to rely
on the automatic mechanism. Therefore, when you finish using the memory allocated by
this function, call mxFree to deallocate the memory.

If you do not assign this data to an output argument, and you want it to persist after the
MEX-file completes, call mexMakeMemoryPersistent after calling this function. If you
write a MEX-file with persistent memory, be sure to register a mexAtExit function to
free allocated memory in the event your MEX-file is cleared.



 mxRealloc (C and Fortran)

1-321

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxsetnzmax.c

See Also

mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent, mxCalloc,
mxDestroyArray, mxFree, mxMalloc



1  API Reference

1-322

mxRemoveField (C and Fortran)
Remove field from structure array

C Syntax
#include "matrix.h"

void mxRemoveField(mxArray *pm, int fieldnumber);

Fortran Syntax
subroutine mxRemoveField(pm, fieldnumber)

mwPointer pm

integer*4 fieldnumber

Arguments

pm

Pointer to a structure mxArray
fieldnumber

Number of the field you want to remove. In C, to remove the first field, set
fieldnumber to 0; to remove the second field, set fieldnumber to 1; and so on. In
Fortran, to remove the first field, set fieldnumber to 1; to remove the second field,
set fieldnumber to 2; and so on.

Description

Call mxRemoveField to remove a field from a structure array. If the field does not exist,
nothing happens. This function does not destroy the field values. To destroy the actual
field values, call mxRemoveField and then call mxDestroyArray.

Consider a MATLAB structure initialized to:

patient.name = 'John Doe';

patient.billing = 127.00;



 mxRemoveField (C and Fortran)

1-323

patient.test = [79 75 73; 180 178 177.5; 220 210 205];

In C, the field number 0 represents the field name; field number 1 represents field
billing; field number 2 represents field test. In Fortran, the field number 1
represents the field name; field number 2 represents field billing; field number 3
represents field test.

See Also

mxAddField, mxDestroyArray, mxGetFieldByNumber



1  API Reference

1-324

mxSetCell (C and Fortran)
Set contents of cell array

C Syntax
#include "matrix.h"

void mxSetCell(mxArray *pm, mwIndex index, mxArray *value);

Fortran Syntax
subroutine mxSetCell(pm, index, value)

mwPointer pm, value

mwIndex index

Arguments
pm

Pointer to a cell mxArray
index

Index from the beginning of the mxArray. Specify the number of elements between
the first cell of the mxArray and the cell you want to set. The easiest way to calculate
index in a multidimensional cell array is to call mxCalcSingleSubscript.

value

Pointer to new value for the cell. You can put an mxArray of any type into a cell. You
can even put another cell mxArray into a cell.

Description
Call mxSetCell to put the designated value into a particular cell of a cell mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays. Do not modify the inputs.
Using mxSetCell* or mxSetField* functions to modify the cells or fields of a MATLAB
argument causes unpredictable results.



 mxSetCell (C and Fortran)

1-325

This function does not free any memory allocated for existing data that it displaces. To
free existing memory, call mxDestroyArray on the pointer returned by mxGetCell
before you call mxSetCell.

Examples

See the following examples in matlabroot/extern/examples/refbook.

• phonebook.c

See the following examples in matlabroot/extern/examples/mx.

• mxcreatecellmatrix.c
• mxcreatecellmatrixf.F

See Also

mxCreateCellArray, mxCreateCellMatrix, mxGetCell, mxIsCell,
mxDestroyArray



1  API Reference

1-326

mxSetClassName (C)
Structure array to MATLAB object array

C Syntax
#include "matrix.h"

int mxSetClassName(mxArray *array_ptr, const char *classname);

Arguments

array_ptr

Pointer to an mxArray of class mxSTRUCT_CLASS
classname

Object class to which to convert array_ptr

Returns

0 if successful, and nonzero otherwise. One cause of failure is that array_ptr is not a
structure mxArray. Call mxIsStruct to determine whether array_ptr is a structure.

Description

mxSetClassName converts a structure array to an object array, to be saved subsequently
to a MAT-file. The object is not registered or validated by MATLAB software until it is
loaded via the LOAD command. If the specified classname is an undefined class within
MATLAB, LOAD converts the object back to a simple structure array.

See Also

mxIsClass, mxGetClassID



 mxSetData (C and Fortran)

1-327

mxSetData (C and Fortran)

Set pointer to real numeric data elements in array

C Syntax

#include "matrix.h"

void mxSetData(mxArray *pm, void *pr);

Fortran Syntax

subroutine mxSetData(pm, pr)

mwPointer pm, pr

Arguments

pm

Pointer to an mxArray
pr

Pointer to an array. Each element in the array contains the real component of
a value. The array must be in dynamic memory; call mxCalloc to allocate this
memory. Do not use the ANSI C calloc function, which can cause memory
alignment issues leading to program termination.

Description

mxSetData is like mxSetPr, except that in C, its second argument is a void *. Use this
function on numeric arrays with contents other than double.

This function does not free any memory allocated for existing data that it displaces. To
free existing memory, call mxFree on the pointer returned by mxGetData before you call
mxSetData.



1  API Reference

1-328

Examples

See the following examples in matlabroot/extern/examples/refbook.

• arrayFillSetData.c

See Also

mxCalloc, mxFree, mxGetData, mxSetPr



 mxSetDimensions (C and Fortran)

1-329

mxSetDimensions (C and Fortran)
Modify number of dimensions and size of each dimension

C Syntax
#include "matrix.h"

int mxSetDimensions(mxArray *pm, const mwSize *dims,

  mwSize ndim);

Fortran Syntax
integer*4 mxSetDimensions(pm, dims, ndim)

mwPointer pm

mwSize ndim

mwSize dims(ndim)

Arguments
pm

Pointer to an mxArray
dims

Dimensions array. Each element in the dimensions array contains the size of the
array in that dimension. For example, in C, setting dims[0] to 5 and dims[1] to 7
establishes a 5-by-7 mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 mxArray. In most cases, there are ndim elements in the dims
array.

ndim

Number of dimensions

Returns
0 on success, and 1 on failure. mxSetDimensions allocates heap space to hold the input
size array. So it is possible (though unlikely) that increasing the number of dimensions
can cause the system to run out of heap space.



1  API Reference

1-330

Description

Call mxSetDimensions to reshape an existing mxArray. mxSetDimensions is like
mxSetM and mxSetN; however, mxSetDimensions provides greater control for reshaping
mxArrays that have more than two dimensions.

mxSetDimensions does not allocate or deallocate any space for the pr or pi arrays.
Consequently, if your call to mxSetDimensions increases the number of elements in the
mxArray, enlarge the pr (and pi, if it exists) arrays accordingly.

If your call to mxSetDimensions reduces the number of elements in the mxArray, you
can optionally reduce the size of the pr and pi arrays using mxRealloc.

MATLAB automatically removes any trailing singleton dimensions specified in the dims
argument. For example, if ndim equals 5 and dims equals [4 1 7 1 1], the resulting
array has the dimensions 4-by-1-by-7.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxsetdimensions.c
• mxsetdimensionsf.F

See Also

mxGetNumberOfDimensions, mxSetM, mxSetN, mxRealloc



 mxSetField (C and Fortran)

1-331

mxSetField (C and Fortran)
Set field value in structure array, given index and field name

C Syntax
#include "matrix.h"

void mxSetField(mxArray *pm, mwIndex index,

  const char *fieldname, mxArray *pvalue);

Fortran Syntax
subroutine mxSetField(pm, index, fieldname, pvalue)

mwPointer pm, pvalue

mwIndex index

character*(*) fieldname

Arguments

pm

Pointer to a structure mxArray. Call mxIsStruct to determine whether pm points to
a structure mxArray.

index

Index of an element in the array.

In C, the first element of an mxArray has an index of 0. The index of the last
element is N-1, where N is the number of elements in the array. In Fortran, the first
element of an mxArray has an index of 1. The index of the last element is N, where
N is the number of elements in the array.

See mxCalcSingleSubscript for details on calculating an index.
fieldname

Name of a field in the structure. The field must exist in the structure. Call
mxGetFieldNameByNumber or mxGetFieldNumber to determine existing field
names.



1  API Reference

1-332

pvalue

Pointer to an mxArray containing the data you want to assign to fieldname.

Description

Use mxSetField to assign the contents of pvalue to the field fieldname of element
index.

If you want to replace the contents of fieldname, first free the memory of the existing
data. Use the mxGetField function to get a pointer to the field, call mxDestroyArray on
the pointer, then call mxSetField to assign the new value.

You cannot assign pvalue to more than one field in a structure or to more than one
element in the mxArray. If you want to assign the contents of pvalue to multiple fields,
use the mxDuplicateArray function to make copies of the data then call mxSetField
on each copy.

To free memory for structures created using this function, call mxDestroyArray only on
the structure array. Do not call mxDestroyArray on the array pvalue points to. If you
do, MATLAB attempts to free the same memory twice, which can corrupt memory.

Note Inputs to a MEX-file are constant read-only mxArrays. Do not modify the inputs.
Using mxSetCell* or mxSetField* functions to modify the cells or fields of a MATLAB
argument causes unpredictable results.

Alternatives

C Language

In C, you can replace the statements:

field_num = mxGetFieldNumber(pa, "fieldname");

mxSetFieldByNumber(pa, index, field_num, new_value_pa);

with a call to mxSetField:

mxSetField(pa, index, "fieldname", new_value_pa);



 mxSetField (C and Fortran)

1-333

Fortran Language

In Fortran, you can replace the statements:

fieldnum = mxGetFieldNumber(pm, 'fieldname')

mxSetFieldByNumber(pm, index, fieldnum, newvalue)

with a call to mxSetField:

mxSetField(pm, index, 'fieldname', newvalue)

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxcreatestructarray.c

See Also

mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldNameByNumber, mxGetFieldNumber, mxGetNumberOfFields,
mxIsStruct, mxSetFieldByNumber, mxDestroyArray, mxCalcSingleSubscript



1  API Reference

1-334

mxSetFieldByNumber (C and Fortran)
Set field value in structure array, given index and field number

C Syntax
#include "matrix.h"

void mxSetFieldByNumber(mxArray *pm, mwIndex index,

  int fieldnumber, mxArray *pvalue);

Fortran Syntax
subroutine mxSetFieldByNumber(pm, index, fieldnumber, pvalue)

mwPointer pm, pvalue

mwIndex index

integer*4 fieldnumber

Arguments
pm

Pointer to a structure mxArray. Call mxIsStruct to determine whether pm points to
a structure mxArray.

index

Index of the desired element.

In C, the first element of an mxArray has an index of 0. The index of the last
element is N-1, where N is the number of elements in the array. In Fortran, the first
element of an mxArray has an index of 1. The index of the last element is N, where
N is the number of elements in the array.

See mxCalcSingleSubscript for details on calculating an index.
fieldnumber

Position of the field in the structure. The field must exist in the structure.

In C, the first field within each element has a fieldnumber of 0. The fieldnumber
of the last is N-1, where N is the number of fields.



 mxSetFieldByNumber (C and Fortran)

1-335

In Fortran, the first field within each element has a fieldnumber of 1. The
fieldnumber of the last is N, where N is the number of fields.

pvalue

Pointer to the mxArray containing the data you want to assign.

Description

Use mxSetFieldByNumber to assign the contents of pvalue to the field specified by
fieldnumber of element index. mxSetFieldByNumber is like mxSetField; however,
the function identifies the field by position number, not by name.

If you want to replace the contents at fieldnumber, first free the memory of the
existing data. Use the mxGetFieldByNumber function to get a pointer to the field, call
mxDestroyArray on the pointer, then call mxSetFieldByNumber to assign the new
value.

You cannot assign pvalue to more than one field in a structure or to more than one
element in the mxArray. If you want to assign the contents of pvalue to multiple
fields, use the mxDuplicateArray function to make copies of the data then call
mxSetFieldByNumber on each copy.

To free memory for structures created using this function, call mxDestroyArray only on
the structure array. Do not call mxDestroyArray on the array pvalue points to. If you
do, MATLAB attempts to free the same memory twice, which can corrupt memory.

Note Inputs to a MEX-file are constant read-only mxArrays. Do not modify the inputs.
Using mxSetCell* or mxSetField* functions to modify the cells or fields of a MATLAB
argument causes unpredictable results.

Alternatives

C Language

In C, calling:

mxSetField(pa, index, "field_name", new_value_pa);



1  API Reference

1-336

is equivalent to calling:

field_num = mxGetFieldNumber(pa, "field_name");

mxSetFieldByNumber(pa, index, field_num, new_value_pa);

Fortran Language

In Fortran, calling:

mxSetField(pm, index, 'fieldname', newvalue)

is equivalent to calling:

fieldnum = mxGetFieldNumber(pm, 'fieldname')

mxSetFieldByNumber(pm, index, fieldnum, newvalue)

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxcreatestructarray.c

See Also

mxCreateStructArray, mxCreateStructMatrix, mxGetFieldByNumber,
mxGetFieldNameByNumber, mxGetFieldNumber, mxGetNumberOfFields,
mxIsStruct, mxSetField, mxDestroyArray, mxCalcSingleSubscript



 mxSetImagData (C and Fortran)

1-337

mxSetImagData (C and Fortran)

Set pointer to imaginary data elements in array

C Syntax

#include "matrix.h"

void mxSetImagData(mxArray *pm, void *pi);

Fortran Syntax

subroutine mxSetImagData(pm, pi)

mwPointer pm, pi

Arguments

pm

Pointer to an mxArray
pi

Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this memory. Do not use the ANSI C calloc function, which
can cause memory alignment issues leading to program termination. If pi points to
static memory, memory errors will result when the array is destroyed.

Description

mxSetImagData is like mxSetPi, except that in C, its pi argument is a void *. Use
this function on numeric arrays with contents other than double.

This function does not free any memory allocated for existing data that it displaces. To
free existing memory, call mxFree on the pointer returned by mxGetImagData before
you call mxSetImagData.



1  API Reference

1-338

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxisfinite.c

See Also

mxCalloc, mxFree, mxGetImagData, mxSetPi



 mxSetIr (C and Fortran)

1-339

mxSetIr (C and Fortran)
IR array of sparse array

C Syntax
#include "matrix.h"

void mxSetIr(mxArray *pm, mwIndex *ir);

Fortran Syntax
subroutine mxSetIr(pm, ir)

mwPointer pm, ir

Arguments

pm

Pointer to a sparse mxArray
ir

Pointer to the ir array. The ir array must be sorted in column-major order.

Description

Use mxSetIr to specify the ir array of a sparse mxArray. The ir array is an array of
integers; the length of the ir array equals the value of nzmax.

Each element in the ir array indicates a row (offset by 1) at which a nonzero element
can be found. (The jc array is an index that indirectly specifies a column where nonzero
elements can be found. See mxSetJc for more details on jc.)

For example, suppose that you create a 7-by-3 sparse mxArray named Sparrow
containing six nonzero elements by typing:

Sparrow = zeros(7,3);

Sparrow(2,1) = 1;



1  API Reference

1-340

Sparrow(5,1) = 1;

Sparrow(3,2) = 1;

Sparrow(2,3) = 2;

Sparrow(5,3) = 1;

Sparrow(6,3) = 1;

Sparrow = sparse(Sparrow);

The pr array holds the real data for the sparse matrix, which in Sparrow is the five 1s
and the one 2. If there is any nonzero imaginary data, it is in a pi array.

Subscript ir pr jc Comments

(2,1) 1 1 0 Column 1; ir is 1 because row is 2.
(5,1) 4 1 2 Column 1; ir is 4 because row is 5.
(3,2) 2 1 3 Column 2; ir is 2 because row is 3.
(2,3) 1 2 6 Column 3; ir is 1 because row is 2.
(5,3) 4 1   Column 3; ir is 4 because row is 5.
(6,3) 5 1   Column 3; ir is 5 because row is 6.

Notice how each element of the ir array is always 1 less than the row of the
corresponding nonzero element. For instance, the first nonzero element is in row 2;
therefore, the first element in ir is 1 (that is, 2 – 1). The second nonzero element is in
row 5; therefore, the second element in ir is 4 (5 – 1).

The ir array must be in column-major order. The ir array must define the row positions
in column 1 (if any) first, then the row positions in column 2 (if any) second, and so on,
through column N. Within each column, row position 1 must appear before row position
2, and so on.

mxSetIr does not sort the ir array for you; you must specify an ir array that is already
sorted.

This function does not free any memory allocated for existing data that it displaces. To
free existing memory, call mxFree on the pointer returned by mxGetIr before you call
mxSetIr.

Examples

See the following examples in matlabroot/extern/examples/mx.



 mxSetIr (C and Fortran)

1-341

• mxsetnzmax.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c

See Also

mxCreateSparse, mxGetIr, mxGetJc, mxSetJc, mxFree



1  API Reference

1-342

mxSetJc (C and Fortran)
JC array of sparse array

C Syntax
#include "matrix.h"

void mxSetJc(mxArray *pm, mwIndex *jc);

Fortran Syntax
subroutine mxSetJc(pm, jc)

mwPointer pm, jc

Arguments

pm

Pointer to a sparse mxArray
jc

Pointer to the jc array

Description

Use mxSetJc to specify a new jc array for a sparse mxArray. The jc array is an integer
array having n+1 elements, where n is the number of columns in the sparse mxArray.

If the jth column of the sparse mxArray has any nonzero elements:

• jc[j] is the index in ir, pr, and pi (if it exists) of the first nonzero element in the
jth column.

• jc[j+1]-1 is the index of the last nonzero element in the jth column.
• For the jth column of the sparse matrix, jc[j] is the total number of nonzero

elements in all preceding columns.



 mxSetJc (C and Fortran)

1-343

The number of nonzero elements in the jth column of the sparse mxArray is:

jc[j+1] - jc[j];

For the jth column of the sparse mxArray, jc[j] is the total number of nonzero
elements in all preceding columns. The last element of the jc array, jc[number of
columns], is equal to nnz, which is the number of nonzero elements in the entire sparse
mxArray.

For example, consider a 7-by-3 sparse mxArray named Sparrow containing six nonzero
elements, created by typing:

Sparrow = zeros(7,3);

Sparrow(2,1) = 1;

Sparrow(5,1) = 1;

Sparrow(3,2) = 1;

Sparrow(2,3) = 2;

Sparrow(5,3) = 1;

Sparrow(6,3) = 1;

Sparrow = sparse(Sparrow);

The following table lists the contents of the ir, jc, and pr arrays.

Subscript ir pr jc Comment

(2,1) 1 1 0 Column 1 contains two nonzero
elements, with rows designated by
ir[0] and ir[1]

(5,1) 4 1 2 Column 2 contains one nonzero
element, with row designated by ir[2]

(3,2) 2 1 3 Column 3 contains three nonzero
elements, with rows designated by
ir[3],ir[4], and ir[5]

(2,3) 1 2 6 There are six nonzero elements in all.
(5,3) 4 1    
(6,3) 5 1    

As an example of a much sparser mxArray, consider a 1000-by-8 sparse mxArray named
Spacious containing only three nonzero elements. The ir, pr, and jc arrays contain the
values listed in this table.



1  API Reference

1-344

Subscript ir pr jc Comment

(73,2) 72 1 0 Column 1 contains no nonzero
elements.

(50,3) 49 1 0 Column 2 contains one nonzero
element, with row designated by ir[0].

(64,5) 63 1 1 Column 3 contains one nonzero
element, with row designated by ir[1].

      2 Column 4 contains no nonzero
elements.

      2 Column 5 contains one nonzero
element, with row designated by ir[2].

      3 Column 6 contains no nonzero
elements.

      3 Column 7 contains no nonzero
elements.

      3 Column 8 contains no nonzero
elements.

      3 There are three nonzero elements in all.

This function does not free any memory allocated for existing data that it displaces. To
free existing memory, call mxFree on the pointer returned by mxGetJc before you call
mxSetJc.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxsetdimensions.c

See the following examples in matlabroot/extern/examples/mex.

• explore.c



 mxSetJc (C and Fortran)

1-345

See Also

mxCreateSparse, mxGetIr, mxGetJc, mxSetIr, mxFree



1  API Reference

1-346

mxSetM (C and Fortran)
Set number of rows in array

C Syntax
#include "matrix.h"

void mxSetM(mxArray *pm, mwSize m);

Fortran Syntax
subroutine mxSetM(pm, m)

mwPointer pm

mwSize m

Arguments
pm

Pointer to an mxArray
m

Number of rows

Description
Call mxSetM to set the number of rows in the specified mxArray. The term rows means
the first dimension of an mxArray, regardless of the number of dimensions. Call mxSetN
to set the number of columns.

You typically use mxSetM to change the shape of an existing mxArray. The mxSetM
function does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetM and mxSetN increase the number of elements in
the mxArray, enlarge the pr, pi, ir, and/or jc arrays. Call mxRealloc to enlarge them.

If your calls to mxSetM and mxSetN end up reducing the number of elements in the
mxArray, you might want to reduce the sizes of the pr, pi, ir, and/or jc arrays in order
to use heap space more efficiently. However, reducing the size is not mandatory.



 mxSetM (C and Fortran)

1-347

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxsetdimensions.c

See the following examples in matlabroot/extern/examples/refbook.

• sincall.c
• sincall.F

See Also

mxGetM, mxGetN, mxSetN



1  API Reference

1-348

mxSetN (C and Fortran)

Set number of columns in array

C Syntax

#include "matrix.h"

void mxSetN(mxArray *pm, mwSize n);

Fortran Syntax

subroutine mxSetN(pm, n)

mwPointer pm

mwSize n

Arguments

pm

Pointer to an mxArray
n

Number of columns

Description

Call mxSetN to set the number of columns in the specified mxArray. The term columns
always means the second dimension of a matrix. Calling mxSetN forces an mxArray to
have two dimensions. For example, if pm points to an mxArray having three dimensions,
calling mxSetN reduces the mxArray to two dimensions.

You typically use mxSetN to change the shape of an existing mxArray. The mxSetN
function does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetN and mxSetM increase the number of elements in
the mxArray, enlarge the pr, pi, ir, and/or jc arrays.



 mxSetN (C and Fortran)

1-349

If your calls to mxSetM and mxSetN end up reducing the number of elements in the
mxArray, you might want to reduce the sizes of the pr, pi, ir, and/or jc arrays in order
to use heap space more efficiently. However, reducing the size is not mandatory.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxsetdimensions.c

See the following examples in matlabroot/extern/examples/refbook.

• sincall.c
• sincall.F

See Also

mxGetM, mxGetN, mxSetM



1  API Reference

1-350

mxSetNzmax (C and Fortran)
Set storage space for nonzero elements

C Syntax
#include "matrix.h"

void mxSetNzmax(mxArray *pm, mwSize nzmax);

Fortran Syntax
subroutine mxSetNzmax(pm, nzmax)

mwPointer pm

mwSize nzmax

Arguments
pm

Pointer to a sparse mxArray.
nzmax

Number of elements mxCreateSparse should allocate to hold the arrays pointed
to by ir, pr, and pi (if it exists). Set nzmax greater than or equal to the number of
nonzero elements in the mxArray, but set it to be less than or equal to the number of
rows times the number of columns. If you specify an nzmax value of 0, mxSetNzmax
sets the value of nzmax to 1.

Description

Use mxSetNzmax to assign a new value to the nzmax field of the specified sparse
mxArray. The nzmax field holds the maximum number of nonzero elements in the sparse
mxArray.

The number of elements in the ir, pr, and pi (if it exists) arrays must be equal to
nzmax. Therefore, after calling mxSetNzmax, you must change the size of the ir, pr, and
pi arrays. To change the size of one of these arrays:



 mxSetNzmax (C and Fortran)

1-351

1 Call mxRealloc with a pointer to the array, setting the size to the new value of
nzmax.

2 Call the appropriate mxSet routine (mxSetIr, mxSetPr, or mxSetPi) to establish
the new memory area as the current one.

Ways to determine how large to make nzmax are:

• Set nzmax equal to or slightly greater than the number of nonzero elements in a
sparse mxArray. This approach conserves precious heap space.

• Make nzmax equal to the total number of elements in an mxArray. This approach
eliminates (or, at least reduces) expensive reallocations.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxsetnzmax.c

See Also

mxGetNzmax, mxRealloc



1  API Reference

1-352

mxSetPi (C and Fortran)
Set new imaginary data elements in array of type DOUBLE

C Syntax
#include "matrix.h"

void mxSetPi(mxArray *pm, double *pi);

Fortran Syntax
subroutine mxSetPi(pm, pi)

mwPointer pm, pi

Arguments
pm

Pointer to a full (nonsparse) mxArray
pi

Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this memory. Do not use the ANSI C calloc function, which
can cause memory alignment issues leading to program termination. If pi points to
static memory, memory leaks and other memory errors might result.

Description

Use mxSetPi to set the imaginary data of the specified mxArray.

Most mxCreate* functions optionally allocate heap space to hold imaginary data. If
you tell an mxCreate* function to allocate heap space—for example, by setting the
ComplexFlag to mxCOMPLEX in C (1 in Fortran) or by setting pi to a non-NULL value
in C (a nonzero value in Fortran)—you do not ordinarily use mxSetPi to initialize the
created mxArray's imaginary elements. Rather, you call mxSetPi to replace the initial
imaginary values with new ones.



 mxSetPi (C and Fortran)

1-353

This function does not free any memory allocated for existing data that it displaces. To
free existing memory, call mxFree on the pointer returned by mxGetPi before you call
mxSetPi.

Examples

See the following examples in matlabroot/extern/examples/mx.

• mxisfinite.c
• mxsetnzmax.c

See Also

mxGetPi, mxGetPr, mxSetImagData, mxSetPr, mxFree



1  API Reference

1-354

mxSetPr (C and Fortran)
Set new real data elements in array of type DOUBLE

C Syntax
#include "matrix.h"

void mxSetPr(mxArray *pm, double *pr);

Fortran Syntax
subroutine mxSetPr(pm, pr)

mwPointer pm, pr

Arguments
pm

Pointer to a full (nonsparse) mxArray
pr

Pointer to the first element of an array. Each element in the array contains the
real component of a value. The array must be in dynamic memory; call mxCalloc
to allocate this memory. Do not use the ANSI C calloc function, which can cause
memory alignment issues leading to program termination. If pr points to static
memory, memory leaks and other memory errors can result.

Description
Use mxSetPr to set the real data of the specified mxArray.

All mxCreate* calls allocate heap space to hold real data. Therefore, you do not
ordinarily use mxSetPr to initialize the real elements of a freshly created mxArray.
Rather, you call mxSetPr to replace the initial real values with new ones.

This function does not free any memory allocated for existing data that it displaces. To
free existing memory, call mxFree on the pointer returned by mxGetPr before you call
mxSetPr.



 mxSetPr (C and Fortran)

1-355

Examples

See the following examples in matlabroot/extern/examples/refbook.

• arrayFillSetPr.c

See the following examples in matlabroot/extern/examples/mx.

• mxsetnzmax.c

See Also

mxGetPi, mxGetPr, mxSetData, mxSetPi, mxFree



1  API Reference

1-356

mxSetProperty (C and Fortran)

Set value of public property of MATLAB object

C Syntax

#include "matrix.h"

void mxSetProperty(mxArray *pa, mwIndex index,

  const char *propname, const mxArray *value);

Fortran Syntax

subroutine mxSetProperty(pa, index, propname, value)

mwPointer pa, value

mwIndex index

character*(*) propname

Arguments

pa

Pointer to an mxArray which is an object.
index

Index of the desired element of the object array.

In C, the first element of an mxArray has an index of 0. The index of the last
element is N-1, where N is the number of elements in the array. In Fortran, the first
element of an mxArray has an index of 1. The index of the last element is N, where
N is the number of elements in the array.

propname

Name of the property whose value you are assigning.
value

Pointer to the mxArray you are assigning.



 mxSetProperty (C and Fortran)

1-357

Description

Use mxSetProperty to assign a value to the specified property. In pseudo-C
terminology, mxSetProperty performs the assignment:

pa[index].propname = value;

Property propname must be an existing, public property and index must be within the
bounds of the mxArray. Use mxGetNumberOfElements or mxGetM and mxGetN to test
the index value.

mxSetProperty makes a copy of the value before assigning it as the new property value.
This might be a concern if the property uses a large amount of memory. There must be
sufficient memory (in the heap) to hold the copy of the value.

See Also

mxGetProperty

Introduced in R2008a




